
An interpretation of system F
through bar recursion

Valentin Blot

University of Bath

research funded by the UK EPSRC

Realizability interpretations of PA2

I Second-order arithmetic (PA2):
I Quantification on N: ∀n
I Quantification on P (N): ∀X
I Induction: ∀X (X (0)⇒ ∀n (X (n)⇒ X (n + 1))⇒ ∀n X (n))
I Comprehension: ∃X∀n (A [n]⇔ X (n))

I Realizability for PA2
I in polymorphic λ-calculus:

I Krivine realizability
I 〈λx .x , λx .x〉 ∃X∀n (A [n] ⇔ X (n))

I in system T + bar recursion (simply-typed)
I Spector, Kohlenbach, Berger-Oliva, Berardi-Bezem-Coquand
I brec ∀n ∃b (A [n] ⇔ b) ⇒ ∃X ∀n (A [n] ⇔ X (n))
I ∀n ∃b (A [n] ⇔ b)

1/38

Realizability interpretations of PA2

I Second-order arithmetic (PA2):
I Quantification on N: ∀n
I Quantification on P (N): ∀X
I Induction: ∀X (X (0)⇒ ∀n (X (n)⇒ X (n + 1))⇒ ∀n X (n))
I Comprehension: ∃X∀n (A [n]⇔ X (n))

I Realizability for PA2
I in polymorphic λ-calculus:

I Krivine realizability
I 〈λx .x , λx .x〉 ∃X∀n (A [n] ⇔ X (n))

I in system T + bar recursion (simply-typed)
I Spector, Kohlenbach, Berger-Oliva, Berardi-Bezem-Coquand
I brec ∀n ∃b (A [n] ⇔ b) ⇒ ∃X ∀n (A [n] ⇔ X (n))
I ∀n ∃b (A [n] ⇔ b)

1/38

Realizability interpretations of PA2

I Second-order arithmetic (PA2):
I Quantification on N: ∀n
I Quantification on P (N): ∀X
I Induction: ∀X (X (0)⇒ ∀n (X (n)⇒ X (n + 1))⇒ ∀n X (n))
I Comprehension: ∃X∀n (A [n]⇔ X (n))

I Realizability for PA2
I in polymorphic λ-calculus:

I Krivine realizability
I 〈λx .x , λx .x〉 ∃X∀n (A [n] ⇔ X (n))

I in system T + bar recursion (simply-typed)
I Spector, Kohlenbach, Berger-Oliva, Berardi-Bezem-Coquand
I brec ∀n ∃b (A [n] ⇔ b) ⇒ ∃X ∀n (A [n] ⇔ X (n))
I ∀n ∃b (A [n] ⇔ b)

1/38

Weak head normalization of system F in PA2

Definition (Weak head reduction)

(λx .M)N P0 . . . Pn−1 � M [N/x] P0 . . . Pn−1

Theorem (Weak head normalization of system F)

If M : T in system F then weak head reduction terminates on M

I Reducibility candidates (sets of λ-terms with some properties)

I Not formalizable in PA2 (Gödel’s incompleteness)

I But for each M : T there is a proof in PA2 that M normalizes

I Indeed, f provably total in PA2 iff f representable in F

The translation of M : T is the bar recursive realizability
interpretation of its normalization proof

2/38

Weak head normalization of system F in PA2

Definition (Weak head reduction)

(λx .M)N P0 . . . Pn−1 � M [N/x] P0 . . . Pn−1

Theorem (Weak head normalization of system F)

If M : T in system F then weak head reduction terminates on M

I Reducibility candidates (sets of λ-terms with some properties)

I Not formalizable in PA2 (Gödel’s incompleteness)

I But for each M : T there is a proof in PA2 that M normalizes

I Indeed, f provably total in PA2 iff f representable in F

The translation of M : T is the bar recursive realizability
interpretation of its normalization proof

2/38

Weak head normalization of system F in PA2

Definition (Weak head reduction)

(λx .M)N P0 . . . Pn−1 � M [N/x] P0 . . . Pn−1

Theorem (Weak head normalization of system F)

If M : T in system F then weak head reduction terminates on M

I Reducibility candidates (sets of λ-terms with some properties)

I Not formalizable in PA2 (Gödel’s incompleteness)

I But for each M : T there is a proof in PA2 that M normalizes

I Indeed, f provably total in PA2 iff f representable in F

The translation of M : T is the bar recursive realizability
interpretation of its normalization proof

2/38

Weak head normalization of system F in PA2

Definition (Weak head reduction)

(λx .M)N P0 . . . Pn−1 � M [N/x] P0 . . . Pn−1

Theorem (Weak head normalization of system F)

If M : T in system F then weak head reduction terminates on M

I Reducibility candidates (sets of λ-terms with some properties)

I Not formalizable in PA2 (Gödel’s incompleteness)

I But for each M : T there is a proof in PA2 that M normalizes

I Indeed, f provably total in PA2 iff f representable in F

The translation of M : T is the bar recursive realizability
interpretation of its normalization proof

2/38

Outline

A logic for λ-terms (bye bye Gödelitis)

A simply-typed total programming language with bar recusion

A realizability model for our logic

The realizability interpretation of normalization of M : T

The translation of M : T

3/38

A logic for λ-terms
(bye bye Gödelitis)

4/38

Terms

Multi-sorted first-order logic

I Natural numbers: m

I λ-terms (de Bruijn indices): M

I Applicative contexts (stacks of terms): Π

I Sets of λ-terms: X

I Booleans: Φ

m ::= i | 0 | S m M ::= t | m | λ.M | M Π | M [m 7→ Π]

Π ::= π | 〈〉 | 〈Π,M〉 X Φ ::= b | tt | ff | M ∈ X

i , t, π, X and b range over countable sets of sorted variables

5/38

Terms

Multi-sorted first-order logic

I Natural numbers: m

I λ-terms (de Bruijn indices): M

I Applicative contexts (stacks of terms): Π

I Sets of λ-terms: X

I Booleans: Φ

m ::= i | 0 | S m M ::= t | m | λ.M | M Π | M [m 7→ Π]

Π ::= π | 〈〉 | 〈Π,M〉 X Φ ::= b | tt | ff | M ∈ X

i , t, π, X and b range over countable sets of sorted variables

5/38

Substitutions
Substitutions are part of the language because:

I A condition for X to be a reducibility candidate is:

∀t ∀u ∀π (t [0 7→ u] π ∈ X =⇒ (λ.t) u π ∈ X)

I The induction hypothesis of the normalization theorem is:

Tn−1, . . . ,T0 ` M : U

=⇒ ∀ti ∈ [Ti] ,M [0 7→ 〈t0, . . . , tn−1〉] ∈ [U]

M [m 7→ 〈M0, . . . ,Mn−1〉] replaces variables:

0, . . . , m − 1, m, . . . , m + n − 1, m + n, . . .

with terms:

0, . . . , m − 1, M0, . . . , Mn−1, m, . . .

6/38

Substitutions
Substitutions are part of the language because:

I A condition for X to be a reducibility candidate is:

∀t ∀u ∀π (t [0 7→ u] π ∈ X =⇒ (λ.t) u π ∈ X)

I The induction hypothesis of the normalization theorem is:

Tn−1, . . . ,T0 ` M : U

=⇒ ∀ti ∈ [Ti] ,M [0 7→ 〈t0, . . . , tn−1〉] ∈ [U]

M [m 7→ 〈M0, . . . ,Mn−1〉] replaces variables:

0, . . . , m − 1, m, . . . , m + n − 1, m + n, . . .

with terms:

0, . . . , m − 1, M0, . . . , Mn−1, m, . . .

6/38

Substitutions
Substitutions are part of the language because:

I A condition for X to be a reducibility candidate is:

∀t ∀u ∀π (t [0 7→ u] π ∈ X =⇒ (λ.t) u π ∈ X)

I The induction hypothesis of the normalization theorem is:

Tn−1, . . . ,T0 ` M : U

=⇒ ∀ti ∈ [Ti] ,M [0 7→ 〈t0, . . . , tn−1〉] ∈ [U]

M [m 7→ 〈M0, . . . ,Mn−1〉] replaces variables:

0, . . . , m − 1, m, . . . , m + n − 1, m + n, . . .

with terms:

0, . . . , m − 1, M0, . . . , Mn−1, m, . . .

6/38

Substitutions
Substitutions are part of the language because:

I A condition for X to be a reducibility candidate is:

∀t ∀u ∀π (t [0 7→ u] π ∈ X =⇒ (λ.t) u π ∈ X)

I The induction hypothesis of the normalization theorem is:

Tn−1, . . . ,T0 ` M : U

=⇒ ∀ti ∈ [Ti] ,M [0 7→ 〈t0, . . . , tn−1〉] ∈ [U]

M [m 7→ 〈M0, . . . ,Mn−1〉] replaces variables:

0, . . . , m − 1, m, . . . , m + n − 1, m + n, . . .

with terms:

0, . . . , m − 1, M0, . . . , Mn−1, m, . . .

6/38

Atomic predicates

P ::= Φ | M↓m| (|m|) | (|M|) | (|Π|)

I Φ means “Φ = tt”

I M↓m means that weak head reduction terminates on M in at
most m steps

I (| |) are relativization predicates: their unique realizer is their
value (I will come back to this)

I no (|X |) or (|Φ|): sets and booleans never need to be relativized

7/38

Atomic predicates

P ::= Φ | M↓m| (|m|) | (|M|) | (|Π|)

I Φ means “Φ = tt”

I M↓m means that weak head reduction terminates on M in at
most m steps

I (| |) are relativization predicates: their unique realizer is their
value (I will come back to this)

I no (|X |) or (|Φ|): sets and booleans never need to be relativized

7/38

Atomic predicates

P ::= Φ | M↓m| (|m|) | (|M|) | (|Π|)

I Φ means “Φ = tt”

I M↓m means that weak head reduction terminates on M in at
most m steps

I (| |) are relativization predicates: their unique realizer is their
value (I will come back to this)

I no (|X |) or (|Φ|): sets and booleans never need to be relativized

7/38

Formulas

A,B ::= P | A⇒ B | A ∧ B | ∀i A | ∀t A | ∀π A | ∀X A | ∀b A

I Negation defined as: ¬A ∆
= A⇒ ff

I Existentials encoded as: ∃i A ∆
= ¬∀i ¬A, same for t, π, X , b

I Relativized quantifications defined as: ∀r i A ∆
= ∀i ((|i |)⇒ A)

and ∃r i A ∆
= ¬∀r i ¬A, same for t, π

I A realizer of ∀r i A can depend on i , a realizer of ∀i A cannot

I Normalization defined as: M↓ ∆
= ∃r i M↓i

8/38

Formulas

A,B ::= P | A⇒ B | A ∧ B | ∀i A | ∀t A | ∀π A | ∀X A | ∀b A

I Negation defined as: ¬A ∆
= A⇒ ff

I Existentials encoded as: ∃i A ∆
= ¬∀i ¬A, same for t, π, X , b

I Relativized quantifications defined as: ∀r i A ∆
= ∀i ((|i |)⇒ A)

and ∃r i A ∆
= ¬∀r i ¬A, same for t, π

I A realizer of ∀r i A can depend on i , a realizer of ∀i A cannot

I Normalization defined as: M↓ ∆
= ∃r i M↓i

8/38

Formulas

A,B ::= P | A⇒ B | A ∧ B | ∀i A | ∀t A | ∀π A | ∀X A | ∀b A

I Negation defined as: ¬A ∆
= A⇒ ff

I Existentials encoded as: ∃i A ∆
= ¬∀i ¬A, same for t, π, X , b

I Relativized quantifications defined as: ∀r i A ∆
= ∀i ((|i |)⇒ A)

and ∃r i A ∆
= ¬∀r i ¬A, same for t, π

I A realizer of ∀r i A can depend on i , a realizer of ∀i A cannot

I Normalization defined as: M↓ ∆
= ∃r i M↓i

8/38

Formulas

A,B ::= P | A⇒ B | A ∧ B | ∀i A | ∀t A | ∀π A | ∀X A | ∀b A

I Negation defined as: ¬A ∆
= A⇒ ff

I Existentials encoded as: ∃i A ∆
= ¬∀i ¬A, same for t, π, X , b

I Relativized quantifications defined as: ∀r i A ∆
= ∀i ((|i |)⇒ A)

and ∃r i A ∆
= ¬∀r i ¬A, same for t, π

I A realizer of ∀r i A can depend on i , a realizer of ∀i A cannot

I Normalization defined as: M↓ ∆
= ∃r i M↓i

8/38

Weak head normalization, formally (1)

If A (t) is a formula with free variable t, define:

RedCand (A)
∆
= (∀rπ A (0π) ∧ ∀r t (A (t)⇒ t↓))

∧ ∀r t ∀ru ∀rπ (A (t [0 7→ 〈u〉] π)⇒ A ((λ.t) 〈u〉 π))

If T type of system F built from variables X of the logic, define
RCT (t) with free variables ~X and t:

RCX (t)
∆
= t ∈ X RCT→U (t)

∆
= ∀ru (RCT (u)⇒ RCU (t u))

RC∀X T (t)
∆
= ∀X

(
RedCand

(
X
)
⇒ RCT (t)

)
where X (t)

∆
= t ∈ X . RCT (t) is what we wrote t ∈ [T] earlier

9/38

Weak head normalization, formally (1)

If A (t) is a formula with free variable t, define:

RedCand (A)
∆
= (∀rπ A (0π) ∧ ∀r t (A (t)⇒ t↓))

∧ ∀r t ∀ru ∀rπ (A (t [0 7→ 〈u〉] π)⇒ A ((λ.t) 〈u〉 π))

If T type of system F built from variables X of the logic, define
RCT (t) with free variables ~X and t:

RCX (t)
∆
= t ∈ X RCT→U (t)

∆
= ∀ru (RCT (u)⇒ RCU (t u))

RC∀X T (t)
∆
= ∀X

(
RedCand

(
X
)
⇒ RCT (t)

)
where X (t)

∆
= t ∈ X . RCT (t) is what we wrote t ∈ [T] earlier

9/38

Weak head normalization, formally (2)

The proof goes in three steps:

I RedCand (⇓) where ⇓ (t)
∆
= t↓

I If T type of F with FV (T) = {X0, . . . ,Xn−1} then:

∀X0(RedCand
(
X0

)
⇒ . . .⇒ ∀Xn−1(RedCand

(
Xn−1

)
⇒ RedCand (RCT)) . . .)

I If FV (T0, . . . ,Tm−1,U) ⊆ {X0, . . . ,Xn−1} and
Tm−1, . . . ,T0 ` M : U typing derivation in F then:

∀X0(RedCand
(
X0

)
⇒ . . .⇒ ∀Xn−1(RedCand

(
Xn−1

)
⇒ ∀r tm−1(RCTm−1 (tm−1)⇒ . . .⇒ ∀r t0(RCT0 (t0)

⇒ RCU (M [0 7→ 〈t0, . . . , tm−1〉])) . . .)) . . .)

10/38

Weak head normalization, formally (2)

The proof goes in three steps:

I RedCand (⇓) where ⇓ (t)
∆
= t↓

I If T type of F with FV (T) = {X0, . . . ,Xn−1} then:

∀X0(RedCand
(
X0

)
⇒ . . .⇒ ∀Xn−1(RedCand

(
Xn−1

)
⇒ RedCand (RCT)) . . .)

I If FV (T0, . . . ,Tm−1,U) ⊆ {X0, . . . ,Xn−1} and
Tm−1, . . . ,T0 ` M : U typing derivation in F then:

∀X0(RedCand
(
X0

)
⇒ . . .⇒ ∀Xn−1(RedCand

(
Xn−1

)
⇒ ∀r tm−1(RCTm−1 (tm−1)⇒ . . .⇒ ∀r t0(RCT0 (t0)

⇒ RCU (M [0 7→ 〈t0, . . . , tm−1〉])) . . .)) . . .)

10/38

Weak head normalization, formally (2)

The proof goes in three steps:

I RedCand (⇓) where ⇓ (t)
∆
= t↓

I If T type of F with FV (T) = {X0, . . . ,Xn−1} then:

∀X0(RedCand
(
X0

)
⇒ . . .⇒ ∀Xn−1(RedCand

(
Xn−1

)
⇒ RedCand (RCT)) . . .)

I If FV (T0, . . . ,Tm−1,U) ⊆ {X0, . . . ,Xn−1} and
Tm−1, . . . ,T0 ` M : U typing derivation in F then:

∀X0(RedCand
(
X0

)
⇒ . . .⇒ ∀Xn−1(RedCand

(
Xn−1

)
⇒ ∀r tm−1(RCTm−1 (tm−1)⇒ . . .⇒ ∀r t0(RCT0 (t0)

⇒ RCU (M [0 7→ 〈t0, . . . , tm−1〉])) . . .)) . . .)

10/38

Weak head normalization, formally (2)

The proof goes in three steps:

I RedCand (⇓) where ⇓ (t)
∆
= t↓

I If T type of F with FV (T) = {X0, . . . ,Xn−1} then:

∀X0(RedCand
(
X0

)
⇒ . . .⇒ ∀Xn−1(RedCand

(
Xn−1

)
⇒ RedCand (RCT)) . . .)

I If FV (T0, . . . ,Tm−1,U) ⊆ {X0, . . . ,Xn−1} and
Tm−1, . . . ,T0 ` M : U typing derivation in F then:

∀X0(RedCand
(
X0

)
⇒ . . .⇒ ∀Xn−1(RedCand

(
Xn−1

)
⇒ ∀r tm−1(RCTm−1 (tm−1)⇒ . . .⇒ ∀r t0(RCT0 (t0)

⇒ RCU (M [0 7→ 〈t0, . . . , tm−1〉])) . . .)) . . .)

10/38

Weak head normalization, formally (3)

In particular if M is a closed term of closed type T in F then:

RCT (M) and RedCand (RCT)

therefore by definition of RedCand () we obtain:

M↓ i.e. ∃r i M↓i

Which is a Σ0
1 formula

 classical extraction will give some n ∈ N such that M reaches a
weak head normal form in at most n steps!

Then it is straightforward to compute this normal form with
primitive recursion

11/38

Weak head normalization, formally (3)

In particular if M is a closed term of closed type T in F then:

RCT (M) and RedCand (RCT)

therefore by definition of RedCand () we obtain:

M↓ i.e. ∃r i M↓i

Which is a Σ0
1 formula

 classical extraction will give some n ∈ N such that M reaches a
weak head normal form in at most n steps!

Then it is straightforward to compute this normal form with
primitive recursion

11/38

Weak head normalization, formally (3)

In particular if M is a closed term of closed type T in F then:

RCT (M) and RedCand (RCT)

therefore by definition of RedCand () we obtain:

M↓ i.e. ∃r i M↓i

Which is a Σ0
1 formula

 classical extraction will give some n ∈ N such that M reaches a
weak head normal form in at most n steps!

Then it is straightforward to compute this normal form with
primitive recursion

11/38

Weak head normalization, formally (3)

In particular if M is a closed term of closed type T in F then:

RCT (M) and RedCand (RCT)

therefore by definition of RedCand () we obtain:

M↓ i.e. ∃r i M↓i

Which is a Σ0
1 formula

 classical extraction will give some n ∈ N such that M reaches a
weak head normal form in at most n steps!

Then it is straightforward to compute this normal form with
primitive recursion

11/38

Weak head normalization, formally (3)

In particular if M is a closed term of closed type T in F then:

RCT (M) and RedCand (RCT)

therefore by definition of RedCand () we obtain:

M↓ i.e. ∃r i M↓i

Which is a Σ0
1 formula

 classical extraction will give some n ∈ N such that M reaches a
weak head normal form in at most n steps!

Then it is straightforward to compute this normal form with
primitive recursion

11/38

A simply-typed total
programming language with

bar recusion

12/38

Simply-typed λ-calculus with products

Simple types:

σ, τ ::= κ | > | σ → τ | σ × τ

where κ ranges over a set of base types

Typing rules:

Γ, x : σ ` x : σ
(c:σ)∈Cst

Γ ` c : σ
Γ, x : σ ` M : τ

Γ ` λx .M : σ → τ
Γ ` M : σ → τ Γ ` N : σ

Γ ` M N : τ
Γ ` M : σ Γ ` N : τ

Γ ` 〈M, N〉 : σ × τ Γ ` ∗ : >
Γ ` M : σ × τ
Γ ` p1 M : σ

Γ ` M : σ × τ
Γ ` p2 M : τ

where Cst is a set of typed constants

13/38

Simply-typed λ-calculus with products

Simple types:

σ, τ ::= κ | > | σ → τ | σ × τ

where κ ranges over a set of base types

Typing rules:

Γ, x : σ ` x : σ
(c:σ)∈Cst

Γ ` c : σ
Γ, x : σ ` M : τ

Γ ` λx .M : σ → τ
Γ ` M : σ → τ Γ ` N : σ

Γ ` M N : τ
Γ ` M : σ Γ ` N : τ

Γ ` 〈M, N〉 : σ × τ Γ ` ∗ : >
Γ ` M : σ × τ
Γ ` p1 M : σ

Γ ` M : σ × τ
Γ ` p2 M : τ

where Cst is a set of typed constants

13/38

System ΛT
I 3 base types:

I ι type of natural numbers
I λ type of λ-terms
I λ� type of finite lists of λ-terms

I Cst consists of constructors and iterators on these:
I for ι: z : ι s : ι→ ι itι : σ → (σ → σ)→ ι→ σ
I for λ: var : ι→ λ abs : λ→ λ app : λ→ λ→ λ

itλ : (ι→ σ)→ (σ → σ)→ (σ → σ → σ)→ λ→ σ
I for λ�: nil : λ� cons : λ� → λ→ λ�

itλ� : σ → (σ → λ→ σ)→ λ� → σ
I Easy to define:

I app� s.t.:

app� M 〈N0 . . . Nn−1〉 ∗ app (. . . (app M P0) . . .) Pn−1

where 〈N0 . . . Nn−1〉
∆
= cons (. . . (cons nil N0) . . .) Nn−1

and Ni ∗ Pi
I M [N 7→ P] for M : λ, N : ι, P : λ implementing substitution
I eq s.t. eq M N ∗ z iff M ∗ P and N ∗ P for some P

14/38

System ΛT
I 3 base types:

I ι type of natural numbers
I λ type of λ-terms
I λ� type of finite lists of λ-terms

I Cst consists of constructors and iterators on these:
I for ι: z : ι s : ι→ ι itι : σ → (σ → σ)→ ι→ σ
I for λ: var : ι→ λ abs : λ→ λ app : λ→ λ→ λ

itλ : (ι→ σ)→ (σ → σ)→ (σ → σ → σ)→ λ→ σ
I for λ�: nil : λ� cons : λ� → λ→ λ�

itλ� : σ → (σ → λ→ σ)→ λ� → σ

I Easy to define:
I app� s.t.:

app� M 〈N0 . . . Nn−1〉 ∗ app (. . . (app M P0) . . .) Pn−1

where 〈N0 . . . Nn−1〉
∆
= cons (. . . (cons nil N0) . . .) Nn−1

and Ni ∗ Pi
I M [N 7→ P] for M : λ, N : ι, P : λ implementing substitution
I eq s.t. eq M N ∗ z iff M ∗ P and N ∗ P for some P

14/38

System ΛT
I 3 base types:

I ι type of natural numbers
I λ type of λ-terms
I λ� type of finite lists of λ-terms

I Cst consists of constructors and iterators on these:
I for ι: z : ι s : ι→ ι itι : σ → (σ → σ)→ ι→ σ
I for λ: var : ι→ λ abs : λ→ λ app : λ→ λ→ λ

itλ : (ι→ σ)→ (σ → σ)→ (σ → σ → σ)→ λ→ σ
I for λ�: nil : λ� cons : λ� → λ→ λ�

itλ� : σ → (σ → λ→ σ)→ λ� → σ
I Easy to define:

I app� s.t.:

app� M 〈N0 . . . Nn−1〉 ∗ app (. . . (app M P0) . . .) Pn−1

where 〈N0 . . . Nn−1〉
∆
= cons (. . . (cons nil N0) . . .) Nn−1

and Ni ∗ Pi
I M [N 7→ P] for M : λ, N : ι, P : λ implementing substitution
I eq s.t. eq M N ∗ z iff M ∗ P and N ∗ P for some P

14/38

Preliminaries for bar recursion: observable partial functions

I Type of observable partial functions on λ:

σ†
∆
= λ→ ι× σ

I p1 (M N) ∗ z iff M : σ† defined in N : λ with value p2 (M N)

I Empty partial function {} : σ† s.t. {} M ∗ 〈s z, canσ〉
I canσ : σ is an inductively defined canonical term

I M | N completes M : σ† with N : λ→ σ, i.e.:

M | N ∗
{
p2 (M P) if p1 (M P) ∗ z

N P otherwise

I M ∪ {N 7→ P} extends M : σ† with P : σ at N : λ, i.e.:

(M ∪ {N 7→ P}) Q ∗
{
〈z, P〉 if eq N Q ∗ z

M Q otherwise

15/38

Preliminaries for bar recursion: observable partial functions

I Type of observable partial functions on λ:

σ†
∆
= λ→ ι× σ

I p1 (M N) ∗ z iff M : σ† defined in N : λ with value p2 (M N)

I Empty partial function {} : σ† s.t. {} M ∗ 〈s z, canσ〉
I canσ : σ is an inductively defined canonical term

I M | N completes M : σ† with N : λ→ σ, i.e.:

M | N ∗
{
p2 (M P) if p1 (M P) ∗ z

N P otherwise

I M ∪ {N 7→ P} extends M : σ† with P : σ at N : λ, i.e.:

(M ∪ {N 7→ P}) Q ∗
{
〈z, P〉 if eq N Q ∗ z

M Q otherwise

15/38

Preliminaries for bar recursion: observable partial functions

I Type of observable partial functions on λ:

σ†
∆
= λ→ ι× σ

I p1 (M N) ∗ z iff M : σ† defined in N : λ with value p2 (M N)

I Empty partial function {} : σ† s.t. {} M ∗ 〈s z, canσ〉
I canσ : σ is an inductively defined canonical term

I M | N completes M : σ† with N : λ→ σ, i.e.:

M | N ∗
{
p2 (M P) if p1 (M P) ∗ z

N P otherwise

I M ∪ {N 7→ P} extends M : σ† with P : σ at N : λ, i.e.:

(M ∪ {N 7→ P}) Q ∗
{
〈z, P〉 if eq N Q ∗ z

M Q otherwise

15/38

Preliminaries for bar recursion: observable partial functions

I Type of observable partial functions on λ:

σ†
∆
= λ→ ι× σ

I p1 (M N) ∗ z iff M : σ† defined in N : λ with value p2 (M N)

I Empty partial function {} : σ† s.t. {} M ∗ 〈s z, canσ〉
I canσ : σ is an inductively defined canonical term

I M | N completes M : σ† with N : λ→ σ, i.e.:

M | N ∗
{
p2 (M P) if p1 (M P) ∗ z

N P otherwise

I M ∪ {N 7→ P} extends M : σ† with P : σ at N : λ, i.e.:

(M ∪ {N 7→ P}) Q ∗
{
〈z, P〉 if eq N Q ∗ z

M Q otherwise

15/38

System ΛTbr

New constant:

brec : ((σ → ι)→ σ)→ ((λ→ σ)→ ι)→ σ† → ι

Reduction:

brec M N P N (P | λx .M (λy .brec M N (P ∪ {x 7→ y})))

N continuous ⇒ looks at only finitely many values of:

P | λx .M (λy .brec M N (P ∪ {x 7→ y}))

I if P defined at all these values: same result as N (P | canλ→σ)

I if N needs value at Q : λ and p1 (P Q) 6 ∗ z, then call
recursively brec M N (P ∪ {Q 7→ y}) where y is provided by M

I It terminates because N is continuous

16/38

System ΛTbr

New constant:

brec : ((σ → ι)→ σ)→ ((λ→ σ)→ ι)→ σ† → ι

Reduction:

brec M N P N (P | λx .M (λy .brec M N (P ∪ {x 7→ y})))

N continuous ⇒ looks at only finitely many values of:

P | λx .M (λy .brec M N (P ∪ {x 7→ y}))

I if P defined at all these values: same result as N (P | canλ→σ)

I if N needs value at Q : λ and p1 (P Q) 6 ∗ z, then call
recursively brec M N (P ∪ {Q 7→ y}) where y is provided by M

I It terminates because N is continuous

16/38

System ΛTbr

New constant:

brec : ((σ → ι)→ σ)→ ((λ→ σ)→ ι)→ σ† → ι

Reduction:

brec M N P N (P | λx .M (λy .brec M N (P ∪ {x 7→ y})))

N continuous ⇒ looks at only finitely many values of:

P | λx .M (λy .brec M N (P ∪ {x 7→ y}))

I if P defined at all these values: same result as N (P | canλ→σ)

I if N needs value at Q : λ and p1 (P Q) 6 ∗ z, then call
recursively brec M N (P ∪ {Q 7→ y}) where y is provided by M

I It terminates because N is continuous

16/38

System ΛTbr

New constant:

brec : ((σ → ι)→ σ)→ ((λ→ σ)→ ι)→ σ† → ι

Reduction:

brec M N P N (P | λx .M (λy .brec M N (P ∪ {x 7→ y})))

N continuous ⇒ looks at only finitely many values of:

P | λx .M (λy .brec M N (P ∪ {x 7→ y}))

I if P defined at all these values: same result as N (P | canλ→σ)

I if N needs value at Q : λ and p1 (P Q) 6 ∗ z, then call
recursively brec M N (P ∪ {Q 7→ y}) where y is provided by M

I It terminates because N is continuous

16/38

Domain semantics of system ΛTbr

I For each type σ define domain [[σ]]:

[[ι]]
∆
= N⊥ [[λ]]

∆
= Λ⊥ [[λ�]]

∆
= (Λ∗)⊥ [[>]]

∆
= {∗}⊥

[[σ → τ]]
∆
= {ϕ : [[σ]]→ [[τ]] | ϕ continuous} [[σ × τ]]

∆
= [[σ]]× [[τ]]

where:
I E⊥ is E ∪ {⊥} with ϕ ≤ ψ iff ϕ = ⊥ or ϕ = ψ
I [[σ → τ]] is ordered pointwise
I [[σ × τ]] is ordered componentwise

I For each term M : σ define [[M]] ∈ [[σ]]

We have soundness:

M N⇒ [[M]] = [[N]]

and computational adequacy:

M : ι ∧ [[M]] = n⇒ M ∗ sn z

and similarly on λ and λ�

17/38

Domain semantics of system ΛTbr

I For each type σ define domain [[σ]]:

[[ι]]
∆
= N⊥ [[λ]]

∆
= Λ⊥ [[λ�]]

∆
= (Λ∗)⊥ [[>]]

∆
= {∗}⊥

[[σ → τ]]
∆
= {ϕ : [[σ]]→ [[τ]] | ϕ continuous} [[σ × τ]]

∆
= [[σ]]× [[τ]]

where:
I E⊥ is E ∪ {⊥} with ϕ ≤ ψ iff ϕ = ⊥ or ϕ = ψ
I [[σ → τ]] is ordered pointwise
I [[σ × τ]] is ordered componentwise

I For each term M : σ define [[M]] ∈ [[σ]]

We have soundness:

M N⇒ [[M]] = [[N]]

and computational adequacy:

M : ι ∧ [[M]] = n⇒ M ∗ sn z

and similarly on λ and λ�

17/38

Domain semantics of system ΛTbr

I For each type σ define domain [[σ]]:

[[ι]]
∆
= N⊥ [[λ]]

∆
= Λ⊥ [[λ�]]

∆
= (Λ∗)⊥ [[>]]

∆
= {∗}⊥

[[σ → τ]]
∆
= {ϕ : [[σ]]→ [[τ]] | ϕ continuous} [[σ × τ]]

∆
= [[σ]]× [[τ]]

where:
I E⊥ is E ∪ {⊥} with ϕ ≤ ψ iff ϕ = ⊥ or ϕ = ψ
I [[σ → τ]] is ordered pointwise
I [[σ × τ]] is ordered componentwise

I For each term M : σ define [[M]] ∈ [[σ]]

We have soundness:

M N⇒ [[M]] = [[N]]

and computational adequacy:

M : ι ∧ [[M]] = n⇒ M ∗ sn z

and similarly on λ and λ�

17/38

Domain semantics of system ΛTbr

I For each type σ define domain [[σ]]:

[[ι]]
∆
= N⊥ [[λ]]

∆
= Λ⊥ [[λ�]]

∆
= (Λ∗)⊥ [[>]]

∆
= {∗}⊥

[[σ → τ]]
∆
= {ϕ : [[σ]]→ [[τ]] | ϕ continuous} [[σ × τ]]

∆
= [[σ]]× [[τ]]

where:
I E⊥ is E ∪ {⊥} with ϕ ≤ ψ iff ϕ = ⊥ or ϕ = ψ
I [[σ → τ]] is ordered pointwise
I [[σ × τ]] is ordered componentwise

I For each term M : σ define [[M]] ∈ [[σ]]

We have soundness:

M N⇒ [[M]] = [[N]]

and computational adequacy:

M : ι ∧ [[M]] = n⇒ M ∗ sn z

and similarly on λ and λ�

17/38

A realizability model for our
logic

18/38

Mapping logic to system ΛTbr

We map terms m, M, Π to programs m∗ : ι, M∗ : λ, Π∗ : λ�

I variables i , t, π are variables of system ΛTbr of type ι, λ, λ�

I ∗ is such that FV (∗) = FV ()

I i∗ = i 0∗ = z (S m)∗ = sm∗

t∗ = t m∗ = varm∗ (λ.M)∗ = absM∗

(M Π)∗ = app�M∗Π∗ (M [m 7→ Π])∗ = M∗ [m∗ 7→ Π∗]

π∗ = π 〈〉∗ = nil 〈Π,M〉∗ = consΠ∗M∗

I No X ∗, b∗ because no (|X |), (|b|): X , Φ are not computational

We map formulas A to types A∗ of system ΛTbr

I Φ∗ = ι (M↓m)∗ = > (∀ A)∗ = A∗

(|m|)∗ = ι (|M|)∗ = λ (|Π|)∗ = λ�

(A⇒ B)∗ = A∗ → B∗ (A ∧ B)∗ = A∗ × B∗

I (M↓m)∗ = >: M↓m is computationally irrelevant

I Φ∗ = ι: we extract nat. numbers (bounds on reduction steps)

I ∀ erased: quantifications are uniform by default

19/38

Mapping logic to system ΛTbr

We map terms m, M, Π to programs m∗ : ι, M∗ : λ, Π∗ : λ�

I variables i , t, π are variables of system ΛTbr of type ι, λ, λ�

I ∗ is such that FV (∗) = FV ()

I i∗ = i 0∗ = z (S m)∗ = sm∗

t∗ = t m∗ = varm∗ (λ.M)∗ = absM∗

(M Π)∗ = app�M∗Π∗ (M [m 7→ Π])∗ = M∗ [m∗ 7→ Π∗]

π∗ = π 〈〉∗ = nil 〈Π,M〉∗ = consΠ∗M∗

I No X ∗, b∗ because no (|X |), (|b|): X , Φ are not computational

We map formulas A to types A∗ of system ΛTbr

I Φ∗ = ι (M↓m)∗ = > (∀ A)∗ = A∗

(|m|)∗ = ι (|M|)∗ = λ (|Π|)∗ = λ�

(A⇒ B)∗ = A∗ → B∗ (A ∧ B)∗ = A∗ × B∗

I (M↓m)∗ = >: M↓m is computationally irrelevant

I Φ∗ = ι: we extract nat. numbers (bounds on reduction steps)

I ∀ erased: quantifications are uniform by default
19/38

Formulas with parameters
I Closed formulas/terms with parameters: formulas/terms

where free variables are replaced by real-world elements:

i are replaced with n ∈ N t with M ∈ Λ π with Π ∈ Λ∗

X with X ∈ P (Λ) b with b ∈ {tt; ff}

I Since N ⊆ N⊥, Λ ⊆ Λ⊥ and Λ∗ ⊆ (Λ∗)⊥:

if m,M,Π closed terms with parameters

then [[m∗]] ∈ [[ι]] , [[M∗]] ∈ [[λ]] , [[Π∗]] ∈ [[λ�]]

I Closed formula A with parameters gets a realizability value:

|A| ⊆ [[A∗]]

I The model is parameterized by a pole:

⊥⊥ ⊆ N

we extract natural numbers (bounds on reduction steps)

20/38

Formulas with parameters
I Closed formulas/terms with parameters: formulas/terms

where free variables are replaced by real-world elements:

i are replaced with n ∈ N t with M ∈ Λ π with Π ∈ Λ∗

X with X ∈ P (Λ) b with b ∈ {tt; ff}

I Since N ⊆ N⊥, Λ ⊆ Λ⊥ and Λ∗ ⊆ (Λ∗)⊥:

if m,M,Π closed terms with parameters

then [[m∗]] ∈ [[ι]] , [[M∗]] ∈ [[λ]] , [[Π∗]] ∈ [[λ�]]

I Closed formula A with parameters gets a realizability value:

|A| ⊆ [[A∗]]

I The model is parameterized by a pole:

⊥⊥ ⊆ N

we extract natural numbers (bounds on reduction steps)

20/38

Formulas with parameters
I Closed formulas/terms with parameters: formulas/terms

where free variables are replaced by real-world elements:

i are replaced with n ∈ N t with M ∈ Λ π with Π ∈ Λ∗

X with X ∈ P (Λ) b with b ∈ {tt; ff}

I Since N ⊆ N⊥, Λ ⊆ Λ⊥ and Λ∗ ⊆ (Λ∗)⊥:

if m,M,Π closed terms with parameters

then [[m∗]] ∈ [[ι]] , [[M∗]] ∈ [[λ]] , [[Π∗]] ∈ [[λ�]]

I Closed formula A with parameters gets a realizability value:

|A| ⊆ [[A∗]]

I The model is parameterized by a pole:

⊥⊥ ⊆ N

we extract natural numbers (bounds on reduction steps)

20/38

Formulas with parameters
I Closed formulas/terms with parameters: formulas/terms

where free variables are replaced by real-world elements:

i are replaced with n ∈ N t with M ∈ Λ π with Π ∈ Λ∗

X with X ∈ P (Λ) b with b ∈ {tt; ff}

I Since N ⊆ N⊥, Λ ⊆ Λ⊥ and Λ∗ ⊆ (Λ∗)⊥:

if m,M,Π closed terms with parameters

then [[m∗]] ∈ [[ι]] , [[M∗]] ∈ [[λ]] , [[Π∗]] ∈ [[λ�]]

I Closed formula A with parameters gets a realizability value:

|A| ⊆ [[A∗]]

I The model is parameterized by a pole:

⊥⊥ ⊆ N

we extract natural numbers (bounds on reduction steps)

20/38

Realizability values: atomic predicates

I
|tt| = |tt| = N⊥
|ff| = |ff | = ⊥⊥

|M ∈ X| =

{
N⊥ if [[M∗]] ∈ X

⊥⊥ if [[M∗]] /∈ X

I these atomic predicates are computationally relevant
 their realizability values depend on ⊥⊥

I |M↓m| =

{
{∗}⊥ if [[M∗]] normalizes in at most [[m∗]] steps

∅ otherwise

I these are computationally irrelevant
 their realizability values are independent from ⊥⊥

I |(|m|)| = {[[m∗]]} |(|M|)| = {[[M∗]]} |(|Π|)| = {[[Π∗]]}
I these are relativizations
 only one realizer: the value of the enclosed term

21/38

Realizability values: atomic predicates

I
|tt| = |tt| = N⊥
|ff| = |ff | = ⊥⊥

|M ∈ X| =

{
N⊥ if [[M∗]] ∈ X

⊥⊥ if [[M∗]] /∈ X

I these atomic predicates are computationally relevant
 their realizability values depend on ⊥⊥

I |M↓m| =

{
{∗}⊥ if [[M∗]] normalizes in at most [[m∗]] steps

∅ otherwise

I these are computationally irrelevant
 their realizability values are independent from ⊥⊥

I |(|m|)| = {[[m∗]]} |(|M|)| = {[[M∗]]} |(|Π|)| = {[[Π∗]]}
I these are relativizations
 only one realizer: the value of the enclosed term

21/38

Realizability values: atomic predicates

I
|tt| = |tt| = N⊥
|ff| = |ff | = ⊥⊥

|M ∈ X| =

{
N⊥ if [[M∗]] ∈ X

⊥⊥ if [[M∗]] /∈ X

I these atomic predicates are computationally relevant
 their realizability values depend on ⊥⊥

I |M↓m| =

{
{∗}⊥ if [[M∗]] normalizes in at most [[m∗]] steps

∅ otherwise

I these are computationally irrelevant
 their realizability values are independent from ⊥⊥

I |(|m|)| = {[[m∗]]} |(|M|)| = {[[M∗]]} |(|Π|)| = {[[Π∗]]}
I these are relativizations
 only one realizer: the value of the enclosed term

21/38

Realizability values: connectives

I |A⇒ B| = {ϕ ∈ [[A∗ → B∗]] | ∀ψ ∈ |A| , ϕ (ψ) ∈ |B|}

|A ∧ B| = {(ϕ,ψ) ∈ [[A∗ × B∗]] | ϕ ∈ |A| ∧ ψ ∈ |B|}
I standard definitions

I |∀i A| =
⋂
n∈N
|A [n/i]| |∀t A| =

⋂
M∈Λ

|A [M/t]|

|∀π A| =
⋂

Π∈Λ∗

|A [Π/π]|

|∀X A| =
⋂

X∈P(Λ)

|A [X/X]| |∀b A| =
⋂

b∈{tt;ff}

|A [b/b]|

I quantified formulas are instantiated with real-world elements

22/38

Realizability values: connectives

I |A⇒ B| = {ϕ ∈ [[A∗ → B∗]] | ∀ψ ∈ |A| , ϕ (ψ) ∈ |B|}

|A ∧ B| = {(ϕ,ψ) ∈ [[A∗ × B∗]] | ϕ ∈ |A| ∧ ψ ∈ |B|}
I standard definitions

I |∀i A| =
⋂
n∈N
|A [n/i]| |∀t A| =

⋂
M∈Λ

|A [M/t]|

|∀π A| =
⋂

Π∈Λ∗

|A [Π/π]|

|∀X A| =
⋂

X∈P(Λ)

|A [X/X]| |∀b A| =
⋂

b∈{tt;ff}

|A [b/b]|

I quantified formulas are instantiated with real-world elements

22/38

A restricted double-negation elimination

double-negation elimination on A is ¬¬A⇒ A

I unrealizable for computationally irrelevant formula M↓m:
I if ⊥⊥ 6= ∅
I and if [[M∗]] doesn’t normalize after [[m∗]] steps
I then |¬¬M↓m| 6= ∅ and |M↓m| = ∅, so |¬¬M↓m⇒ M↓m| = ∅

I but realizable for negative formulas:

A−,B− ::= Φ | A⇒ B− | A− ∧ B− | ∀ A−

I [[dneA−]] ∈ |¬¬A− ⇒ A−| where:
dneΦ = λx .x (λy .y) dne∀εA− = dneA−

dneA⇒B− = λxy .dneB− (λz .x (λu.z (u y)))

dneA−∧B− = λx . 〈dneA− (λy .x (λz .y (p1 z))) , dneB− (λy .x (λz .y (p2 z)))〉
I [[dneΦ]] ∈ |¬¬Φ⇒ Φ| by disjunction of cases

23/38

A restricted double-negation elimination

double-negation elimination on A is ¬¬A⇒ A
I unrealizable for computationally irrelevant formula M↓m:

I if ⊥⊥ 6= ∅
I and if [[M∗]] doesn’t normalize after [[m∗]] steps
I then |¬¬M↓m| 6= ∅ and |M↓m| = ∅, so |¬¬M↓m⇒ M↓m| = ∅

I but realizable for negative formulas:

A−,B− ::= Φ | A⇒ B− | A− ∧ B− | ∀ A−

I [[dneA−]] ∈ |¬¬A− ⇒ A−| where:
dneΦ = λx .x (λy .y) dne∀εA− = dneA−

dneA⇒B− = λxy .dneB− (λz .x (λu.z (u y)))

dneA−∧B− = λx . 〈dneA− (λy .x (λz .y (p1 z))) , dneB− (λy .x (λz .y (p2 z)))〉
I [[dneΦ]] ∈ |¬¬Φ⇒ Φ| by disjunction of cases

23/38

A restricted double-negation elimination

double-negation elimination on A is ¬¬A⇒ A
I unrealizable for computationally irrelevant formula M↓m:

I if ⊥⊥ 6= ∅
I and if [[M∗]] doesn’t normalize after [[m∗]] steps
I then |¬¬M↓m| 6= ∅ and |M↓m| = ∅, so |¬¬M↓m⇒ M↓m| = ∅

I but realizable for negative formulas:

A−,B− ::= Φ | A⇒ B− | A− ∧ B− | ∀ A−

I [[dneA−]] ∈ |¬¬A− ⇒ A−| where:
dneΦ = λx .x (λy .y) dne∀εA− = dneA−

dneA⇒B− = λxy .dneB− (λz .x (λu.z (u y)))

dneA−∧B− = λx . 〈dneA− (λy .x (λz .y (p1 z))) , dneB− (λy .x (λz .y (p2 z)))〉
I [[dneΦ]] ∈ |¬¬Φ⇒ Φ| by disjunction of cases

23/38

A restricted double-negation elimination

double-negation elimination on A is ¬¬A⇒ A
I unrealizable for computationally irrelevant formula M↓m:

I if ⊥⊥ 6= ∅
I and if [[M∗]] doesn’t normalize after [[m∗]] steps
I then |¬¬M↓m| 6= ∅ and |M↓m| = ∅, so |¬¬M↓m⇒ M↓m| = ∅

I but realizable for negative formulas:

A−,B− ::= Φ | A⇒ B− | A− ∧ B− | ∀ A−

I [[dneA−]] ∈ |¬¬A− ⇒ A−| where:
dneΦ = λx .x (λy .y) dne∀εA− = dneA−

dneA⇒B− = λxy .dneB− (λz .x (λu.z (u y)))

dneA−∧B− = λx . 〈dneA− (λy .x (λz .y (p1 z))) , dneB− (λy .x (λz .y (p2 z)))〉

I [[dneΦ]] ∈ |¬¬Φ⇒ Φ| by disjunction of cases

23/38

A restricted double-negation elimination

double-negation elimination on A is ¬¬A⇒ A
I unrealizable for computationally irrelevant formula M↓m:

I if ⊥⊥ 6= ∅
I and if [[M∗]] doesn’t normalize after [[m∗]] steps
I then |¬¬M↓m| 6= ∅ and |M↓m| = ∅, so |¬¬M↓m⇒ M↓m| = ∅

I but realizable for negative formulas:

A−,B− ::= Φ | A⇒ B− | A− ∧ B− | ∀ A−

I [[dneA−]] ∈ |¬¬A− ⇒ A−| where:
dneΦ = λx .x (λy .y) dne∀εA− = dneA−

dneA⇒B− = λxy .dneB− (λz .x (λu.z (u y)))

dneA−∧B− = λx . 〈dneA− (λy .x (λz .y (p1 z))) , dneB− (λy .x (λz .y (p2 z)))〉
I [[dneΦ]] ∈ |¬¬Φ⇒ Φ| by disjunction of cases

23/38

Interpreting second-order elimination

I In Krivine’s realizability, λx .x ∀X A (X)⇒ A (B)
I proof terms are polymorphic

I here, proof terms (and realizers) are simply-typed
I ∀X A (X)⇒ A (B) interpreted in two steps:

I comprehension: ∃X ∀r t (t ∈ X ⇔ B− (t))
I B− negative
I relativized quantification on t
I using bar recursion

I ∀r t (B (t)⇔ C (t))⇒ (Ar (B)⇔ Ar (C))
I Ar relativized:

Ar ,B r ::= P | Ar ⇒ B r | Ar ∧ B r

| ∀r i Ar | ∀r t Ar | ∀rπ Ar | ∀X Ar | ∀b Ar |

I realizer defined by induction on A

I finally, we will get ∀X Ar
(
X
)
⇒ Ar (B−)

−

24/38

Interpreting second-order elimination

I In Krivine’s realizability, λx .x ∀X A (X)⇒ A (B)
I proof terms are polymorphic

I here, proof terms (and realizers) are simply-typed

I ∀X A (X)⇒ A (B) interpreted in two steps:
I comprehension: ∃X ∀r t (t ∈ X ⇔ B− (t))

I B− negative
I relativized quantification on t
I using bar recursion

I ∀r t (B (t)⇔ C (t))⇒ (Ar (B)⇔ Ar (C))
I Ar relativized:

Ar ,B r ::= P | Ar ⇒ B r | Ar ∧ B r

| ∀r i Ar | ∀r t Ar | ∀rπ Ar | ∀X Ar | ∀b Ar |

I realizer defined by induction on A

I finally, we will get ∀X Ar
(
X
)
⇒ Ar (B−)

−

24/38

Interpreting second-order elimination

I In Krivine’s realizability, λx .x ∀X A (X)⇒ A (B)
I proof terms are polymorphic

I here, proof terms (and realizers) are simply-typed
I ∀X A (X)⇒ A (B) interpreted in two steps:

I comprehension: ∃X ∀r t (t ∈ X ⇔ B− (t))
I B− negative
I relativized quantification on t
I using bar recursion

I ∀r t (B (t)⇔ C (t))⇒ (Ar (B)⇔ Ar (C))
I Ar relativized:

Ar ,B r ::= P | Ar ⇒ B r | Ar ∧ B r

| ∀r i Ar | ∀r t Ar | ∀rπ Ar | ∀X Ar | ∀b Ar |

I realizer defined by induction on A

I finally, we will get ∀X Ar
(
X
)
⇒ Ar (B−)

−

24/38

Interpreting second-order elimination

I In Krivine’s realizability, λx .x ∀X A (X)⇒ A (B)
I proof terms are polymorphic

I here, proof terms (and realizers) are simply-typed
I ∀X A (X)⇒ A (B) interpreted in two steps:

I comprehension: ∃X ∀r t (t ∈ X ⇔ B− (t))
I B− negative
I relativized quantification on t
I using bar recursion

I ∀r t (B (t)⇔ C (t))⇒ (Ar (B)⇔ Ar (C))
I Ar relativized:

Ar ,B r ::= P | Ar ⇒ B r | Ar ∧ B r

| ∀r i Ar | ∀r t Ar | ∀rπ Ar | ∀X Ar | ∀b Ar |

I realizer defined by induction on A

I finally, we will get ∀X Ar
(
X
)
⇒ Ar (B−)

−

24/38

Interpreting second-order elimination

I In Krivine’s realizability, λx .x ∀X A (X)⇒ A (B)
I proof terms are polymorphic

I here, proof terms (and realizers) are simply-typed
I ∀X A (X)⇒ A (B) interpreted in two steps:

I comprehension: ∃X ∀r t (t ∈ X ⇔ B− (t))
I B− negative
I relativized quantification on t
I using bar recursion

I ∀r t (B (t)⇔ C (t))⇒ (Ar (B)⇔ Ar (C))
I Ar relativized:

Ar ,B r ::= P | Ar ⇒ B r | Ar ∧ B r

| ∀r i Ar | ∀r t Ar | ∀rπ Ar | ∀X Ar | ∀b Ar |

I realizer defined by induction on A

I finally, we will get ∀X Ar
(
X
)
⇒ Ar (B−)

−

24/38

Interpreting second-order elimination

I In Krivine’s realizability, λx .x ∀X A (X)⇒ A (B)
I proof terms are polymorphic

I here, proof terms (and realizers) are simply-typed
I ∀X A (X)⇒ A (B) interpreted in two steps:

I comprehension: ∃X ∀r t (t ∈ X ⇔ B− (t))
I B− negative
I relativized quantification on t
I using bar recursion

I ∀r t (B (t)⇔ C (t))⇒ (Ar (B)⇔ Ar (C))
I Ar relativized:

Ar ,B r ::= P | Ar ⇒ B r | Ar ∧ B r

| ∀r i Ar | ∀r t Ar | ∀rπ Ar | ∀X Ar | ∀b Ar |

I realizer defined by induction on A

I finally, we will get ∀X Ar
(
X
)
⇒ Ar (B−)

−

24/38

Comprehension: ∃X ∀r t (t ∈ X ⇔ B− (t))

Two steps:

I [[λxy .brec (λz .exfA− (x z)) y {}]]
∈
∣∣∀t ∃b A− (b, t)⇒ ∃X ∀r t A− (t ∈ X , t)

∣∣
I quite technical, uses Zorn’s lemma

I [[λx .x 〈exfA− , λy .x 〈λ .y , λ .z〉〉]] ∈ |∀t ∃b (b ⇔ A− (t))|
I quite straightforward:

Let M ∈ Λ and ϕ ∈ |∀b¬ (b ⇔ A− (M))|. We prove:

[[ϕ 〈exfA− , λy .ϕ 〈λ .y , λ .z〉〉]] ∈ |ff |

ϕ ∈ |¬ (ff ⇔ A− (M))| so we need to prove:

[[exfA−]] ∈
∣∣ff ⇒ A− (M)

∣∣ and [[λy .ϕ 〈λ .y , λ .z〉]] ∈
∣∣A− (M)⇒ ff

∣∣
Let ψ ∈ |A− (M)|, ϕ ∈ |¬ (tt ⇔ A− (M))| so we prove:

[[λ .ψ]] ∈
∣∣tt ⇒ A− (M)

∣∣ and [[λ .z]] ∈
∣∣A− (M)⇒ tt

∣∣

25/38

Comprehension: ∃X ∀r t (t ∈ X ⇔ B− (t))

Two steps:
I [[λxy .brec (λz .exfA− (x z)) y {}]]

∈
∣∣∀t ∃b A− (b, t)⇒ ∃X ∀r t A− (t ∈ X , t)

∣∣
I quite technical, uses Zorn’s lemma

I [[λx .x 〈exfA− , λy .x 〈λ .y , λ .z〉〉]] ∈ |∀t ∃b (b ⇔ A− (t))|
I quite straightforward:

Let M ∈ Λ and ϕ ∈ |∀b¬ (b ⇔ A− (M))|. We prove:

[[ϕ 〈exfA− , λy .ϕ 〈λ .y , λ .z〉〉]] ∈ |ff |

ϕ ∈ |¬ (ff ⇔ A− (M))| so we need to prove:

[[exfA−]] ∈
∣∣ff ⇒ A− (M)

∣∣ and [[λy .ϕ 〈λ .y , λ .z〉]] ∈
∣∣A− (M)⇒ ff

∣∣
Let ψ ∈ |A− (M)|, ϕ ∈ |¬ (tt ⇔ A− (M))| so we prove:

[[λ .ψ]] ∈
∣∣tt ⇒ A− (M)

∣∣ and [[λ .z]] ∈
∣∣A− (M)⇒ tt

∣∣

25/38

Comprehension: ∃X ∀r t (t ∈ X ⇔ B− (t))

Two steps:
I [[λxy .brec (λz .exfA− (x z)) y {}]]

∈
∣∣∀t ∃b A− (b, t)⇒ ∃X ∀r t A− (t ∈ X , t)

∣∣
I quite technical, uses Zorn’s lemma

I [[λx .x 〈exfA− , λy .x 〈λ .y , λ .z〉〉]] ∈ |∀t ∃b (b ⇔ A− (t))|
I quite straightforward:

Let M ∈ Λ and ϕ ∈ |∀b¬ (b ⇔ A− (M))|. We prove:

[[ϕ 〈exfA− , λy .ϕ 〈λ .y , λ .z〉〉]] ∈ |ff |

ϕ ∈ |¬ (ff ⇔ A− (M))| so we need to prove:

[[exfA−]] ∈
∣∣ff ⇒ A− (M)

∣∣ and [[λy .ϕ 〈λ .y , λ .z〉]] ∈
∣∣A− (M)⇒ ff

∣∣
Let ψ ∈ |A− (M)|, ϕ ∈ |¬ (tt ⇔ A− (M))| so we prove:

[[λ .ψ]] ∈
∣∣tt ⇒ A− (M)

∣∣ and [[λ .z]] ∈
∣∣A− (M)⇒ tt

∣∣

25/38

Comprehension: ∃X ∀r t (t ∈ X ⇔ B− (t))

Two steps:
I [[λxy .brec (λz .exfA− (x z)) y {}]]

∈
∣∣∀t ∃b A− (b, t)⇒ ∃X ∀r t A− (t ∈ X , t)

∣∣
I quite technical, uses Zorn’s lemma

I [[λx .x 〈exfA− , λy .x 〈λ .y , λ .z〉〉]] ∈ |∀t ∃b (b ⇔ A− (t))|
I quite straightforward:

Let M ∈ Λ and ϕ ∈ |∀b¬ (b ⇔ A− (M))|. We prove:

[[ϕ 〈exfA− , λy .ϕ 〈λ .y , λ .z〉〉]] ∈ |ff |

ϕ ∈ |¬ (ff ⇔ A− (M))| so we need to prove:

[[exfA−]] ∈
∣∣ff ⇒ A− (M)

∣∣ and [[λy .ϕ 〈λ .y , λ .z〉]] ∈
∣∣A− (M)⇒ ff

∣∣
Let ψ ∈ |A− (M)|, ϕ ∈ |¬ (tt ⇔ A− (M))| so we prove:

[[λ .ψ]] ∈
∣∣tt ⇒ A− (M)

∣∣ and [[λ .z]] ∈
∣∣A− (M)⇒ tt

∣∣

25/38

Comprehension: ∃X ∀r t (t ∈ X ⇔ B− (t))

Two steps:
I [[λxy .brec (λz .exfA− (x z)) y {}]]

∈
∣∣∀t ∃b A− (b, t)⇒ ∃X ∀r t A− (t ∈ X , t)

∣∣
I quite technical, uses Zorn’s lemma

I [[λx .x 〈exfA− , λy .x 〈λ .y , λ .z〉〉]] ∈ |∀t ∃b (b ⇔ A− (t))|
I quite straightforward:

Let M ∈ Λ and ϕ ∈ |∀b¬ (b ⇔ A− (M))|. We prove:

[[ϕ 〈exfA− , λy .ϕ 〈λ .y , λ .z〉〉]] ∈ |ff |

ϕ ∈ |¬ (ff ⇔ A− (M))| so we need to prove:

[[exfA−]] ∈
∣∣ff ⇒ A− (M)

∣∣ and [[λy .ϕ 〈λ .y , λ .z〉]] ∈
∣∣A− (M)⇒ ff

∣∣

Let ψ ∈ |A− (M)|, ϕ ∈ |¬ (tt ⇔ A− (M))| so we prove:

[[λ .ψ]] ∈
∣∣tt ⇒ A− (M)

∣∣ and [[λ .z]] ∈
∣∣A− (M)⇒ tt

∣∣

25/38

Comprehension: ∃X ∀r t (t ∈ X ⇔ B− (t))

Two steps:
I [[λxy .brec (λz .exfA− (x z)) y {}]]

∈
∣∣∀t ∃b A− (b, t)⇒ ∃X ∀r t A− (t ∈ X , t)

∣∣
I quite technical, uses Zorn’s lemma

I [[λx .x 〈exfA− , λy .x 〈λ .y , λ .z〉〉]] ∈ |∀t ∃b (b ⇔ A− (t))|
I quite straightforward:

Let M ∈ Λ and ϕ ∈ |∀b¬ (b ⇔ A− (M))|. We prove:

[[ϕ 〈exfA− , λy .ϕ 〈λ .y , λ .z〉〉]] ∈ |ff |

ϕ ∈ |¬ (ff ⇔ A− (M))| so we need to prove:

[[exfA−]] ∈
∣∣ff ⇒ A− (M)

∣∣ and [[λy .ϕ 〈λ .y , λ .z〉]] ∈
∣∣A− (M)⇒ ff

∣∣
Let ψ ∈ |A− (M)|, ϕ ∈ |¬ (tt ⇔ A− (M))| so we prove:

[[λ .ψ]] ∈
∣∣tt ⇒ A− (M)

∣∣ and [[λ .z]] ∈
∣∣A− (M)⇒ tt

∣∣
25/38

A weak form of bar recursion

I Our bar recursion:

brec : ((σ → ι)→ σ)→ ((λ→ σ)→ ι)→ σ† → ι

brec M N P N (P | λx .M (λy .brec M N (P ∪ {x 7→ y})))

realizes ∀t ∃b A− (b, t)⇒ ∃X ∀r t A− (t ∈ X , t)

I Usual bar recursion:

brec′ : (λ→ (σ → ι)→ σ)→ ((λ→ σ)→ ι)→ σ† → ι

brec′ M N P N
(
P | λx .M x

(
λy .brec′ M N (P ∪ {x 7→ y})

))
realizes ∀r t ∃b A− (b, t)⇒ ∃X ∀r t A− (t ∈ X , t)

stronger

Countable choice stronger than comprehension?

26/38

A weak form of bar recursion

I Our bar recursion:

brec : ((σ → ι)→ σ)→ ((λ→ σ)→ ι)→ σ† → ι

brec M N P N (P | λx .M (λy .brec M N (P ∪ {x 7→ y})))

realizes ∀t ∃b A− (b, t)⇒ ∃X ∀r t A− (t ∈ X , t)

I Usual bar recursion:

brec′ : (λ→ (σ → ι)→ σ)→ ((λ→ σ)→ ι)→ σ† → ι

brec′ M N P N
(
P | λx .M x

(
λy .brec′ M N (P ∪ {x 7→ y})

))
realizes ∀r t ∃b A− (b, t)⇒ ∃X ∀r t A− (t ∈ X , t)

stronger

Countable choice stronger than comprehension?

26/38

A weak form of bar recursion

I Our bar recursion:

brec : ((σ → ι)→ σ)→ ((λ→ σ)→ ι)→ σ† → ι

brec M N P N (P | λx .M (λy .brec M N (P ∪ {x 7→ y})))

realizes ∀t ∃b A− (b, t)⇒ ∃X ∀r t A− (t ∈ X , t)

I Usual bar recursion:

brec′ : (λ→ (σ → ι)→ σ)→ ((λ→ σ)→ ι)→ σ† → ι

brec′ M N P N
(
P | λx .M x

(
λy .brec′ M N (P ∪ {x 7→ y})

))
realizes ∀r t ∃b A− (b, t)⇒ ∃X ∀r t A− (t ∈ X , t)

stronger

Countable choice stronger than comprehension?
26/38

∀r t (B (t)⇔ C (t))⇒ (Ar (B)⇔ Ar (C))

If ~n ∈ ~N, ~M ∈ ~Λ, ~Π ∈ ~Λ∗ then:[[
replAr

[
~n/~i , ~M/~t, ~Π/~π

]]]
∈
∣∣∣(∀r t (B (t)⇔ C (t))⇒ (Ar (B)⇔ Ar (C)))

[
~n/~i , ~M/~t, ~Π/~π

]∣∣∣

where replAr
∆
= λx .repl′Ar and:

repl′
X 7→M∈X = x M∗ repl′

X 7→P
= 〈λy .y , λy .y〉 if P 6= M ∈ X

repl′Ar
1⇒Ar

2
=
〈
λyz .p1 repl

′
Ar

2

(
y
(
p2 repl

′
Ar

1
z
))

, λyz .p2 repl
′
Ar

2

(
y
(
p1 repl

′
Ar

1
z
))〉

repl′Ar
1∧Ar

2
=
〈
λy .

〈
p1 repl

′
Ar

1
(p1 y) , p1 repl

′
Ar

2
(p2 y)

〉
, λy .

〈
p2 repl

′
Ar

1
(p1 y) , p2 repl

′
Ar

2
(p2 y)

〉〉
repl′∀rη Ar =

〈
λyη.p1 repl

′
Ar (y η) , λyη.p2 repl

′
Ar (y η)

〉
repl′∀X Ar = repl′∀b Ar = repl′Ar

27/38

∀r t (B (t)⇔ C (t))⇒ (Ar (B)⇔ Ar (C))

If ~n ∈ ~N, ~M ∈ ~Λ, ~Π ∈ ~Λ∗ then:[[
replAr

[
~n/~i , ~M/~t, ~Π/~π

]]]
∈
∣∣∣(∀r t (B (t)⇔ C (t))⇒ (Ar (B)⇔ Ar (C)))

[
~n/~i , ~M/~t, ~Π/~π

]∣∣∣
where replAr

∆
= λx .repl′Ar and:

repl′
X 7→M∈X = x M∗ repl′

X 7→P
= 〈λy .y , λy .y〉 if P 6= M ∈ X

repl′Ar
1⇒Ar

2
=
〈
λyz .p1 repl

′
Ar

2

(
y
(
p2 repl

′
Ar

1
z
))

, λyz .p2 repl
′
Ar

2

(
y
(
p1 repl

′
Ar

1
z
))〉

repl′Ar
1∧Ar

2
=
〈
λy .

〈
p1 repl

′
Ar

1
(p1 y) , p1 repl

′
Ar

2
(p2 y)

〉
, λy .

〈
p2 repl

′
Ar

1
(p1 y) , p2 repl

′
Ar

2
(p2 y)

〉〉
repl′∀rη Ar =

〈
λyη.p1 repl

′
Ar (y η) , λyη.p2 repl

′
Ar (y η)

〉
repl′∀X Ar = repl′∀b Ar = repl′Ar

27/38

Second-order elimination

elimAr ,B−
∆
=

λx .dneAr (B−)−

λy .brec (λz .exfB− (z 〈exfB− , λu.z 〈λ .u, λ .z〉〉))

(λz .y (p1 (replAr z) x))

{}

elimAr ,B− ∈
∣∣∣∀X Ar

(
X
)
⇒ Ar

(
B−
)−∣∣∣

Believe me!

28/38

Second-order elimination

elimAr ,B−
∆
=

λx .dneAr (B−)−

λy .brec (λz .exfB− (z 〈exfB− , λu.z 〈λ .u, λ .z〉〉))

(λz .y (p1 (replAr z) x))

{}

elimAr ,B− ∈
∣∣∣∀X Ar

(
X
)
⇒ Ar

(
B−
)−∣∣∣

Believe me!

28/38

Second-order elimination

elimAr ,B−
∆
=

λx .dneAr (B−)−

λy .brec (λz .exfB− (z 〈exfB− , λu.z 〈λ .u, λ .z〉〉))

(λz .y (p1 (replAr z) x))

{}

elimAr ,B− ∈
∣∣∣∀X Ar

(
X
)
⇒ Ar

(
B−
)−∣∣∣

Believe me!

28/38

The realizability interpretation
of normalization of M : T

29/38

Normalization of system F: reminder

Three steps:

I RedCand (⇓) where ⇓ (t)
∆
= t↓

I If T type of F with FV (T) = {X0, . . . ,Xn−1} then:

∀X0(RedCand
(
X0

)
⇒ . . .⇒ ∀Xn−1(RedCand

(
Xn−1

)
⇒ RedCand (RCT)) . . .)

I If FV (T0, . . . ,Tm−1,U) ⊆ {X0, . . . ,Xn−1} and
Tm−1, . . . ,T0 ` M : U typing derivation in F then:

∀X0(RedCand
(
X0

)
⇒ . . .⇒ ∀Xn−1(RedCand

(
Xn−1

)
⇒ ∀r tm−1(RCTm−1 (tm−1)⇒ . . .⇒ ∀r t0(RCT0 (t0)

⇒ RCU (M [0 7→ 〈t0, . . . , tm−1〉])) . . .)) . . .)

30/38

Normalization of system F: reminder

Three steps:

I RedCand (⇓) where ⇓ (t)
∆
= t↓

I If T type of F with FV (T) = {X0, . . . ,Xn−1} then:

∀X0(RedCand
(
X0

)
⇒ . . .⇒ ∀Xn−1(RedCand

(
Xn−1

)
⇒ RedCand (RCT)) . . .)

I If FV (T0, . . . ,Tm−1,U) ⊆ {X0, . . . ,Xn−1} and
Tm−1, . . . ,T0 ` M : U typing derivation in F then:

∀X0(RedCand
(
X0

)
⇒ . . .⇒ ∀Xn−1(RedCand

(
Xn−1

)
⇒ ∀r tm−1(RCTm−1 (tm−1)⇒ . . .⇒ ∀r t0(RCT0 (t0)

⇒ RCU (M [0 7→ 〈t0, . . . , tm−1〉])) . . .)) . . .)

30/38

Normalization of system F: reminder

Three steps:

I RedCand (⇓) where ⇓ (t)
∆
= t↓

I If T type of F with FV (T) = {X0, . . . ,Xn−1} then:

∀X0(RedCand
(
X0

)
⇒ . . .⇒ ∀Xn−1(RedCand

(
Xn−1

)
⇒ RedCand (RCT)) . . .)

I If FV (T0, . . . ,Tm−1,U) ⊆ {X0, . . . ,Xn−1} and
Tm−1, . . . ,T0 ` M : U typing derivation in F then:

∀X0(RedCand
(
X0

)
⇒ . . .⇒ ∀Xn−1(RedCand

(
Xn−1

)
⇒ ∀r tm−1(RCTm−1 (tm−1)⇒ . . .⇒ ∀r t0(RCT0 (t0)

⇒ RCU (M [0 7→ 〈t0, . . . , tm−1〉])) . . .)) . . .)

30/38

Normalization of system F: reminder

Three steps:

I RedCand (⇓) where ⇓ (t)
∆
= t↓

I If T type of F with FV (T) = {X0, . . . ,Xn−1} then:

∀X0(RedCand
(
X0

)
⇒ . . .⇒ ∀Xn−1(RedCand

(
Xn−1

)
⇒ RedCand (RCT)) . . .)

I If FV (T0, . . . ,Tm−1,U) ⊆ {X0, . . . ,Xn−1} and
Tm−1, . . . ,T0 ` M : U typing derivation in F then:

∀X0(RedCand
(
X0

)
⇒ . . .⇒ ∀Xn−1(RedCand

(
Xn−1

)
⇒ ∀r tm−1(RCTm−1 (tm−1)⇒ . . .⇒ ∀r t0(RCT0 (t0)

⇒ RCU (M [0 7→ 〈t0, . . . , tm−1〉])) . . .)) . . .)

30/38

RedCand (⇓)

normrc = 〈〈λπx .x z ∗, λtx .x〉 , λtuπxy .x (λi .y (s i))〉

[[normrc]] ∈ |RedCand (⇓)|

31/38

RedCand (RCT)

For T type of system F built from variables X of the logic we
define:

isrcT =
〈〈

isrc
(1)
T , isrc

(2)
T

〉
, isrc

(3)
T

〉
such that FV (isrcT) = {xX | X ∈ FV (T)}

isrc
(1)
X = p1 (p1 xX) isrc

(2)
X = p2 (p1 xX) isrc

(3)
X = p3 xX isrc

(1)
T→U = λπtx .isrc

(1)
U (consπ t)

isrc
(2)
T→U = λtx .isrc

(2)
U (app t (var z))

(
x (var z)

(
isrc

(1)
T nil

))
isrc

(3)
T→U = λtuπxvy .isrc

(3)
U t u (consπ v) (x v y)

isrc
(1)
∀X T = λπxX .isrc

(1)
T π isrc

(3)
∀X T = λtuπyxX .isrc

(3)
T (y xX)

isrc
(2)
∀X T = λtx .elimX 7→RedCand(X)⇒∀r t(RCT (t)⇒t↓),⇓

(
λxXisrc

(2)
T

)
normrc t

(
elimX 7→RedCand(X)⇒RCT (t),⇓ x normrc

)

If ~X ∈ ~P (Λ) and ~ϕ ∈ ~∣∣RedCand (X)∣∣ then:

[[isrcT [~ϕ/ ~xX]]] ∈
∣∣∣RedCand (RCT)

[
~X/~X

]∣∣∣

32/38

RedCand (RCT)

For T type of system F built from variables X of the logic we
define:

isrcT =
〈〈

isrc
(1)
T , isrc

(2)
T

〉
, isrc

(3)
T

〉
such that FV (isrcT) = {xX | X ∈ FV (T)}

isrc
(1)
X = p1 (p1 xX) isrc

(2)
X = p2 (p1 xX) isrc

(3)
X = p3 xX isrc

(1)
T→U = λπtx .isrc

(1)
U (consπ t)

isrc
(2)
T→U = λtx .isrc

(2)
U (app t (var z))

(
x (var z)

(
isrc

(1)
T nil

))
isrc

(3)
T→U = λtuπxvy .isrc

(3)
U t u (consπ v) (x v y)

isrc
(1)
∀X T = λπxX .isrc

(1)
T π isrc

(3)
∀X T = λtuπyxX .isrc

(3)
T (y xX)

isrc
(2)
∀X T = λtx .elimX 7→RedCand(X)⇒∀r t(RCT (t)⇒t↓),⇓

(
λxXisrc

(2)
T

)
normrc t

(
elimX 7→RedCand(X)⇒RCT (t),⇓ x normrc

)

If ~X ∈ ~P (Λ) and ~ϕ ∈ ~∣∣RedCand (X)∣∣ then:

[[isrcT [~ϕ/ ~xX]]] ∈
∣∣∣RedCand (RCT)

[
~X/~X

]∣∣∣

32/38

RedCand (RCT)

For T type of system F built from variables X of the logic we
define:

isrcT =
〈〈

isrc
(1)
T , isrc

(2)
T

〉
, isrc

(3)
T

〉
such that FV (isrcT) = {xX | X ∈ FV (T)}

isrc
(1)
X = p1 (p1 xX) isrc

(2)
X = p2 (p1 xX) isrc

(3)
X = p3 xX isrc

(1)
T→U = λπtx .isrc

(1)
U (consπ t)

isrc
(2)
T→U = λtx .isrc

(2)
U (app t (var z))

(
x (var z)

(
isrc

(1)
T nil

))
isrc

(3)
T→U = λtuπxvy .isrc

(3)
U t u (consπ v) (x v y)

isrc
(1)
∀X T = λπxX .isrc

(1)
T π isrc

(3)
∀X T = λtuπyxX .isrc

(3)
T (y xX)

isrc
(2)
∀X T = λtx .elimX 7→RedCand(X)⇒∀r t(RCT (t)⇒t↓),⇓

(
λxXisrc

(2)
T

)
normrc t

(
elimX 7→RedCand(X)⇒RCT (t),⇓ x normrc

)

If ~X ∈ ~P (Λ) and ~ϕ ∈ ~∣∣RedCand (X)∣∣ then:

[[isrcT [~ϕ/ ~xX]]] ∈
∣∣∣RedCand (RCT)

[
~X/~X

]∣∣∣
32/38

RCT (M [0 7→ 〈t0, . . . , tm−1〉])
If

...
Γ ` M : T

is a valid typing derivation in system F, define:

adeqΓ`M:T

such that FV (adeqΓ`M:T) = {xX | X ∈ FV (Γ,T)}
∪ {tU | U ∈ Γ} ∪ {yU | U ∈ Γ}

adeqΓ`m:U = yU adeqΓ`λ.M:U→T = λtUyU .isrc
(3)
T (M∗ [s z 7→↑tΓ]) tU nil adeqΓ,U`M:T

adeqΓ`M N:T = adeqΓ`M:U→T (N∗ [z 7→ tΓ]) adeqΓ`N:U adeqΓ`M:∀X T = λxX .adeqΓ`M:T

adeqΓ`M:T{U/X} = elimX 7→RedCand(X)⇒RCT (M[0 7→tΓ]),RCU
adeqΓ`M:∀X T isrcU

If ~X ∈ ~P (Λ), ~ϕ ∈ ~∣∣RedCand (X)∣∣, MU ∈ Λ and

ψU ∈
∣∣∣RCU (MU)

[
~X/~X

]∣∣∣ for U ∈ Γ, then:[[
adeqΓ`M:T

[
~MU/ ~tU , ~ψU/ ~yU

]]]
∈
∣∣∣RCT

(
M
[
0 7→ ~MU

]) [
~X/~X

]∣∣∣

33/38

RCT (M [0 7→ 〈t0, . . . , tm−1〉])
If

...
Γ ` M : T

is a valid typing derivation in system F, define:

adeqΓ`M:T

such that FV (adeqΓ`M:T) = {xX | X ∈ FV (Γ,T)}
∪ {tU | U ∈ Γ} ∪ {yU | U ∈ Γ}

adeqΓ`m:U = yU adeqΓ`λ.M:U→T = λtUyU .isrc
(3)
T (M∗ [s z 7→↑tΓ]) tU nil adeqΓ,U`M:T

adeqΓ`M N:T = adeqΓ`M:U→T (N∗ [z 7→ tΓ]) adeqΓ`N:U adeqΓ`M:∀X T = λxX .adeqΓ`M:T

adeqΓ`M:T{U/X} = elimX 7→RedCand(X)⇒RCT (M[0 7→tΓ]),RCU
adeqΓ`M:∀X T isrcU

If ~X ∈ ~P (Λ), ~ϕ ∈ ~∣∣RedCand (X)∣∣, MU ∈ Λ and

ψU ∈
∣∣∣RCU (MU)

[
~X/~X

]∣∣∣ for U ∈ Γ, then:[[
adeqΓ`M:T

[
~MU/ ~tU , ~ψU/ ~yU

]]]
∈
∣∣∣RCT

(
M
[
0 7→ ~MU

]) [
~X/~X

]∣∣∣

33/38

RCT (M [0 7→ 〈t0, . . . , tm−1〉])
If

...
Γ ` M : T

is a valid typing derivation in system F, define:

adeqΓ`M:T

such that FV (adeqΓ`M:T) = {xX | X ∈ FV (Γ,T)}
∪ {tU | U ∈ Γ} ∪ {yU | U ∈ Γ}

adeqΓ`m:U = yU adeqΓ`λ.M:U→T = λtUyU .isrc
(3)
T (M∗ [s z 7→↑tΓ]) tU nil adeqΓ,U`M:T

adeqΓ`M N:T = adeqΓ`M:U→T (N∗ [z 7→ tΓ]) adeqΓ`N:U adeqΓ`M:∀X T = λxX .adeqΓ`M:T

adeqΓ`M:T{U/X} = elimX 7→RedCand(X)⇒RCT (M[0 7→tΓ]),RCU
adeqΓ`M:∀X T isrcU

If ~X ∈ ~P (Λ), ~ϕ ∈ ~∣∣RedCand (X)∣∣, MU ∈ Λ and

ψU ∈
∣∣∣RCU (MU)

[
~X/~X

]∣∣∣ for U ∈ Γ, then:[[
adeqΓ`M:T

[
~MU/ ~tU , ~ψU/ ~yU

]]]
∈
∣∣∣RCT

(
M
[
0 7→ ~MU

]) [
~X/~X

]∣∣∣
33/38

The translation of M : T

34/38

Extracting the bound
In particular if M closed term of closed type T , then:

[[adeq`M:T]] ∈ |RCT (M)| and
[[
isrc

(2)
T

]]
∈ |∀r t (RCT (t)⇒ t↓)|

therefore: [[
isrc

(2)
T M∗ adeq`M:T

]]
∈ |M↓ |

recall that M↓ ≡ ¬∀r i ¬M↓i . Fix now:

⊥⊥ = {n ∈ N | M normalizes in at most n steps}

By case disjunction, [[λx .x]] ∈
∣∣∀r i ¬M↓i ∣∣ and therefore:[[

isrc
(2)
T M∗ adeq`M:T (λx .x)

]]
∈ |ff | = ⊥⊥

so by computational adequacy:

isrc
(2)
T M∗ adeq`M:T (λx .x) ∗ sn z

where n is such that M normalizes in at most n steps

35/38

Extracting the bound
In particular if M closed term of closed type T , then:

[[adeq`M:T]] ∈ |RCT (M)| and
[[
isrc

(2)
T

]]
∈ |∀r t (RCT (t)⇒ t↓)|

therefore: [[
isrc

(2)
T M∗ adeq`M:T

]]
∈ |M↓ |

recall that M↓ ≡ ¬∀r i ¬M↓i . Fix now:

⊥⊥ = {n ∈ N | M normalizes in at most n steps}

By case disjunction, [[λx .x]] ∈
∣∣∀r i ¬M↓i ∣∣ and therefore:[[

isrc
(2)
T M∗ adeq`M:T (λx .x)

]]
∈ |ff | = ⊥⊥

so by computational adequacy:

isrc
(2)
T M∗ adeq`M:T (λx .x) ∗ sn z

where n is such that M normalizes in at most n steps

35/38

Extracting the bound
In particular if M closed term of closed type T , then:

[[adeq`M:T]] ∈ |RCT (M)| and
[[
isrc

(2)
T

]]
∈ |∀r t (RCT (t)⇒ t↓)|

therefore: [[
isrc

(2)
T M∗ adeq`M:T

]]
∈ |M↓ |

recall that M↓ ≡ ¬∀r i ¬M↓i . Fix now:

⊥⊥ = {n ∈ N | M normalizes in at most n steps}

By case disjunction, [[λx .x]] ∈
∣∣∀r i ¬M↓i ∣∣ and therefore:[[

isrc
(2)
T M∗ adeq`M:T (λx .x)

]]
∈ |ff | = ⊥⊥

so by computational adequacy:

isrc
(2)
T M∗ adeq`M:T (λx .x) ∗ sn z

where n is such that M normalizes in at most n steps

35/38

Extracting the bound
In particular if M closed term of closed type T , then:

[[adeq`M:T]] ∈ |RCT (M)| and
[[
isrc

(2)
T

]]
∈ |∀r t (RCT (t)⇒ t↓)|

therefore: [[
isrc

(2)
T M∗ adeq`M:T

]]
∈ |M↓ |

recall that M↓ ≡ ¬∀r i ¬M↓i . Fix now:

⊥⊥ = {n ∈ N | M normalizes in at most n steps}

By case disjunction, [[λx .x]] ∈
∣∣∀r i ¬M↓i ∣∣ and therefore:[[

isrc
(2)
T M∗ adeq`M:T (λx .x)

]]
∈ |ff | = ⊥⊥

so by computational adequacy:

isrc
(2)
T M∗ adeq`M:T (λx .x) ∗ sn z

where n is such that M normalizes in at most n steps

35/38

Extracting the bound
In particular if M closed term of closed type T , then:

[[adeq`M:T]] ∈ |RCT (M)| and
[[
isrc

(2)
T

]]
∈ |∀r t (RCT (t)⇒ t↓)|

therefore: [[
isrc

(2)
T M∗ adeq`M:T

]]
∈ |M↓ |

recall that M↓ ≡ ¬∀r i ¬M↓i . Fix now:

⊥⊥ = {n ∈ N | M normalizes in at most n steps}

By case disjunction, [[λx .x]] ∈
∣∣∀r i ¬M↓i ∣∣ and therefore:[[

isrc
(2)
T M∗ adeq`M:T (λx .x)

]]
∈ |ff | = ⊥⊥

so by computational adequacy:

isrc
(2)
T M∗ adeq`M:T (λx .x) ∗ sn z

where n is such that M normalizes in at most n steps
35/38

Computing the normal form

isrc
(2)
T M∗ adeq`M:T (λx .x) ∗ sn z

where n is such that M normalizes in at most n steps

We can easily define a term red : λ→ λ in system ΛTbr such that:

I if M � N then redM∗ ∗ N∗

I if M is in weak head normal form then redM∗ ∗ M∗

therefore:

itιM
∗ red

(
isrc

(2)
T M∗ adeq`M:T (λx .x)

)
 ∗ N∗

where N is the weak head normal form of M

36/38

Computing the normal form

isrc
(2)
T M∗ adeq`M:T (λx .x) ∗ sn z

where n is such that M normalizes in at most n steps

We can easily define a term red : λ→ λ in system ΛTbr such that:

I if M � N then redM∗ ∗ N∗

I if M is in weak head normal form then redM∗ ∗ M∗

therefore:

itιM
∗ red

(
isrc

(2)
T M∗ adeq`M:T (λx .x)

)
 ∗ N∗

where N is the weak head normal form of M

36/38

Computing the normal form

isrc
(2)
T M∗ adeq`M:T (λx .x) ∗ sn z

where n is such that M normalizes in at most n steps

We can easily define a term red : λ→ λ in system ΛTbr such that:

I if M � N then redM∗ ∗ N∗

I if M is in weak head normal form then redM∗ ∗ M∗

therefore:

itιM
∗ red

(
isrc

(2)
T M∗ adeq`M:T (λx .x)

)
 ∗ N∗

where N is the weak head normal form of M

36/38

Conclusion

37/38

Conclusion

I Translation of system F into a simply-typed total
programming language

I No more impredicativity?

I Normalization of system F reduced to Zorn’s lemma?

I Weak form of bar recursion: comprehension scheme weaker
than classical countable choice?

Many possible improvements:
I Extract directly the normal form rather than a bound

I Normal form of M from normal form of M 0
I Head reduction rather than weak head reduction

I Strong normalization
I Realizers much more complicated
I But we get the β-normal form

Implementation of the translation

38/38

Conclusion

I Translation of system F into a simply-typed total
programming language

I No more impredicativity?

I Normalization of system F reduced to Zorn’s lemma?

I Weak form of bar recursion: comprehension scheme weaker
than classical countable choice?

Many possible improvements:
I Extract directly the normal form rather than a bound

I Normal form of M from normal form of M 0
I Head reduction rather than weak head reduction

I Strong normalization
I Realizers much more complicated
I But we get the β-normal form

Implementation of the translation

38/38

Conclusion

I Translation of system F into a simply-typed total
programming language

I No more impredicativity?

I Normalization of system F reduced to Zorn’s lemma?

I Weak form of bar recursion: comprehension scheme weaker
than classical countable choice?

Many possible improvements:
I Extract directly the normal form rather than a bound

I Normal form of M from normal form of M 0
I Head reduction rather than weak head reduction

I Strong normalization
I Realizers much more complicated
I But we get the β-normal form

Implementation of the translation

38/38

Conclusion

I Translation of system F into a simply-typed total
programming language

I No more impredicativity?

I Normalization of system F reduced to Zorn’s lemma?

I Weak form of bar recursion: comprehension scheme weaker
than classical countable choice?

Many possible improvements:
I Extract directly the normal form rather than a bound

I Normal form of M from normal form of M 0
I Head reduction rather than weak head reduction

I Strong normalization
I Realizers much more complicated
I But we get the β-normal form

Implementation of the translation

38/38

Conclusion

I Translation of system F into a simply-typed total
programming language

I No more impredicativity?

I Normalization of system F reduced to Zorn’s lemma?

I Weak form of bar recursion: comprehension scheme weaker
than classical countable choice?

Many possible improvements:

I Extract directly the normal form rather than a bound
I Normal form of M from normal form of M 0
I Head reduction rather than weak head reduction

I Strong normalization
I Realizers much more complicated
I But we get the β-normal form

Implementation of the translation

38/38

Conclusion

I Translation of system F into a simply-typed total
programming language

I No more impredicativity?

I Normalization of system F reduced to Zorn’s lemma?

I Weak form of bar recursion: comprehension scheme weaker
than classical countable choice?

Many possible improvements:
I Extract directly the normal form rather than a bound

I Normal form of M from normal form of M 0
I Head reduction rather than weak head reduction

I Strong normalization
I Realizers much more complicated
I But we get the β-normal form

Implementation of the translation

38/38

Conclusion

I Translation of system F into a simply-typed total
programming language

I No more impredicativity?

I Normalization of system F reduced to Zorn’s lemma?

I Weak form of bar recursion: comprehension scheme weaker
than classical countable choice?

Many possible improvements:
I Extract directly the normal form rather than a bound

I Normal form of M from normal form of M 0
I Head reduction rather than weak head reduction

I Strong normalization
I Realizers much more complicated
I But we get the β-normal form

Implementation of the translation

38/38

Conclusion

I Translation of system F into a simply-typed total
programming language

I No more impredicativity?

I Normalization of system F reduced to Zorn’s lemma?

I Weak form of bar recursion: comprehension scheme weaker
than classical countable choice?

Many possible improvements:
I Extract directly the normal form rather than a bound

I Normal form of M from normal form of M 0
I Head reduction rather than weak head reduction

I Strong normalization
I Realizers much more complicated
I But we get the β-normal form

Implementation of the translation

38/38

Adequacy of bar recursion: preliminaries

[[λxy .brec (λz .exfA− (x z)) y {}]]
∈
∣∣∀t ∃b A− (b, t)⇒ ∃X ∀r t A− (t ∈ X , t)

∣∣

Let ϕ ∈ |∀t ∃b A− (b, t)| and ψ ∈ |∀X ¬∀r t A− (t ∈ X , t)|, and

write θ
∆
= [[brec (λz .exfA− (ϕ z))ψ]]. [[θ {}]] ∈ |ff |?

Let E be the set of ξ ∈
[[
A−
∗†
]]

such that:

I π2 (ξ (M)) ∈ |A− (tt,M)| ∪ |A− (ff,M)| if π1 (ξ (M)) = 0

I ξ (M) = (1, [[canA−∗]]) otherwise

I ξ (⊥) = ⊥
I θ (ξ) /∈ |ff |

and let ≺ be the following partial order on E :

ξ ≺ ξ′ ⇐⇒
(
π1 (ξ (M)) = 0⇒ ξ′ (M) = ξ (M)

)
[[θ {}]] ∈ |ff | ⇐⇒ [[{}]] /∈ E

Adequacy of bar recursion: preliminaries

[[λxy .brec (λz .exfA− (x z)) y {}]]
∈
∣∣∀t ∃b A− (b, t)⇒ ∃X ∀r t A− (t ∈ X , t)

∣∣
Let ϕ ∈ |∀t ∃b A− (b, t)| and ψ ∈ |∀X ¬∀r t A− (t ∈ X , t)|, and

write θ
∆
= [[brec (λz .exfA− (ϕ z))ψ]].

[[θ {}]] ∈ |ff |?
Let E be the set of ξ ∈

[[
A−
∗†
]]

such that:

I π2 (ξ (M)) ∈ |A− (tt,M)| ∪ |A− (ff,M)| if π1 (ξ (M)) = 0

I ξ (M) = (1, [[canA−∗]]) otherwise

I ξ (⊥) = ⊥
I θ (ξ) /∈ |ff |

and let ≺ be the following partial order on E :

ξ ≺ ξ′ ⇐⇒
(
π1 (ξ (M)) = 0⇒ ξ′ (M) = ξ (M)

)
[[θ {}]] ∈ |ff | ⇐⇒ [[{}]] /∈ E

Adequacy of bar recursion: preliminaries

[[λxy .brec (λz .exfA− (x z)) y {}]]
∈
∣∣∀t ∃b A− (b, t)⇒ ∃X ∀r t A− (t ∈ X , t)

∣∣
Let ϕ ∈ |∀t ∃b A− (b, t)| and ψ ∈ |∀X ¬∀r t A− (t ∈ X , t)|, and

write θ
∆
= [[brec (λz .exfA− (ϕ z))ψ]]. [[θ {}]] ∈ |ff |?

Let E be the set of ξ ∈
[[
A−
∗†
]]

such that:

I π2 (ξ (M)) ∈ |A− (tt,M)| ∪ |A− (ff,M)| if π1 (ξ (M)) = 0

I ξ (M) = (1, [[canA−∗]]) otherwise

I ξ (⊥) = ⊥
I θ (ξ) /∈ |ff |

and let ≺ be the following partial order on E :

ξ ≺ ξ′ ⇐⇒
(
π1 (ξ (M)) = 0⇒ ξ′ (M) = ξ (M)

)
[[θ {}]] ∈ |ff | ⇐⇒ [[{}]] /∈ E

Adequacy of bar recursion: preliminaries

[[λxy .brec (λz .exfA− (x z)) y {}]]
∈
∣∣∀t ∃b A− (b, t)⇒ ∃X ∀r t A− (t ∈ X , t)

∣∣
Let ϕ ∈ |∀t ∃b A− (b, t)| and ψ ∈ |∀X ¬∀r t A− (t ∈ X , t)|, and

write θ
∆
= [[brec (λz .exfA− (ϕ z))ψ]]. [[θ {}]] ∈ |ff |?

Let E be the set of ξ ∈
[[
A−
∗†
]]

such that:

I π2 (ξ (M)) ∈ |A− (tt,M)| ∪ |A− (ff,M)| if π1 (ξ (M)) = 0

I ξ (M) = (1, [[canA−∗]]) otherwise

I ξ (⊥) = ⊥
I θ (ξ) /∈ |ff |

and let ≺ be the following partial order on E :

ξ ≺ ξ′ ⇐⇒
(
π1 (ξ (M)) = 0⇒ ξ′ (M) = ξ (M)

)
[[θ {}]] ∈ |ff | ⇐⇒ [[{}]] /∈ E

Adequacy of bar recursion: preliminaries

[[λxy .brec (λz .exfA− (x z)) y {}]]
∈
∣∣∀t ∃b A− (b, t)⇒ ∃X ∀r t A− (t ∈ X , t)

∣∣
Let ϕ ∈ |∀t ∃b A− (b, t)| and ψ ∈ |∀X ¬∀r t A− (t ∈ X , t)|, and

write θ
∆
= [[brec (λz .exfA− (ϕ z))ψ]]. [[θ {}]] ∈ |ff |?

Let E be the set of ξ ∈
[[
A−
∗†
]]

such that:

I π2 (ξ (M)) ∈ |A− (tt,M)| ∪ |A− (ff,M)| if π1 (ξ (M)) = 0

I ξ (M) = (1, [[canA−∗]]) otherwise

I ξ (⊥) = ⊥
I θ (ξ) /∈ |ff |

and let ≺ be the following partial order on E :

ξ ≺ ξ′ ⇐⇒
(
π1 (ξ (M)) = 0⇒ ξ′ (M) = ξ (M)

)
[[θ {}]] ∈ |ff | ⇐⇒ [[{}]] /∈ E

Adequacy of bar recursion: Zorn’s lemma

Theorem (Zorn’s lemma on (E ,≺))

if every chain (totally ordered subset) of E has an upper bound in
E , then E has a maximal element

We prove two things:

I Every non-empty chain has an upper bound

I E has no maximal element

Therefore the empty chain has no upper bound, i.e. E = ∅. In
particular [[{}]] /∈ E , we are done.

Adequacy of bar recursion: Zorn’s lemma

Theorem (Zorn’s lemma on (E ,≺))

if every chain (totally ordered subset) of E has an upper bound in
E , then E has a maximal element

We prove two things:

I Every non-empty chain has an upper bound

I E has no maximal element

Therefore the empty chain has no upper bound, i.e. E = ∅. In
particular [[{}]] /∈ E , we are done.

Adequacy of bar recursion: Zorn’s lemma

Theorem (Zorn’s lemma on (E ,≺))

if every chain (totally ordered subset) of E has an upper bound in
E , then E has a maximal element

We prove two things:

I Every non-empty chain has an upper bound

I E has no maximal element

Therefore the empty chain has no upper bound, i.e. E = ∅. In
particular [[{}]] /∈ E , we are done.

Adequacy of bar recursion: chains 6= ∅ have upper bounds

I C non-empty chain

I ξmax (M) =

{
ξ (M) if π1 (ξ (M)) = 0 for some ξ ∈ C

(1, [[canA−∗]]) otherwise

ξmax (⊥) = ⊥
I ξmax ∈ E : we want to prove θ (ξmax) /∈ |ff |.

I Suppose θ (ξmax) ∈ |ff |
I Continuity of θ implies existence of finite F ⊆ Λ such that:

∀ξ (∀M ∈ F (ξ (M) = ξmax (M))⇒ θ (ξ) = θ (ξmax))

I Since C is a non-empty chain there exists ξ ∈ C such that
∀M ∈ F (ξ (M) = ξmax (M)) and therefore θ (ξ) = θ (ξmax).
ξ ∈ E so θ (ξ) /∈ |ff | and θ (ξmax) = θ (ξ) /∈ |ff |, contradiction.

Therefore ξmax ∈ E is an upper bound for C

Adequacy of bar recursion: chains 6= ∅ have upper bounds

I C non-empty chain

I ξmax (M) =

{
ξ (M) if π1 (ξ (M)) = 0 for some ξ ∈ C

(1, [[canA−∗]]) otherwise

ξmax (⊥) = ⊥

I ξmax ∈ E : we want to prove θ (ξmax) /∈ |ff |.
I Suppose θ (ξmax) ∈ |ff |
I Continuity of θ implies existence of finite F ⊆ Λ such that:

∀ξ (∀M ∈ F (ξ (M) = ξmax (M))⇒ θ (ξ) = θ (ξmax))

I Since C is a non-empty chain there exists ξ ∈ C such that
∀M ∈ F (ξ (M) = ξmax (M)) and therefore θ (ξ) = θ (ξmax).
ξ ∈ E so θ (ξ) /∈ |ff | and θ (ξmax) = θ (ξ) /∈ |ff |, contradiction.

Therefore ξmax ∈ E is an upper bound for C

Adequacy of bar recursion: chains 6= ∅ have upper bounds

I C non-empty chain

I ξmax (M) =

{
ξ (M) if π1 (ξ (M)) = 0 for some ξ ∈ C

(1, [[canA−∗]]) otherwise

ξmax (⊥) = ⊥
I ξmax ∈ E : we want to prove θ (ξmax) /∈ |ff |.

I Suppose θ (ξmax) ∈ |ff |

I Continuity of θ implies existence of finite F ⊆ Λ such that:

∀ξ (∀M ∈ F (ξ (M) = ξmax (M))⇒ θ (ξ) = θ (ξmax))

I Since C is a non-empty chain there exists ξ ∈ C such that
∀M ∈ F (ξ (M) = ξmax (M)) and therefore θ (ξ) = θ (ξmax).
ξ ∈ E so θ (ξ) /∈ |ff | and θ (ξmax) = θ (ξ) /∈ |ff |, contradiction.

Therefore ξmax ∈ E is an upper bound for C

Adequacy of bar recursion: chains 6= ∅ have upper bounds

I C non-empty chain

I ξmax (M) =

{
ξ (M) if π1 (ξ (M)) = 0 for some ξ ∈ C

(1, [[canA−∗]]) otherwise

ξmax (⊥) = ⊥
I ξmax ∈ E : we want to prove θ (ξmax) /∈ |ff |.

I Suppose θ (ξmax) ∈ |ff |
I Continuity of θ implies existence of finite F ⊆ Λ such that:

∀ξ (∀M ∈ F (ξ (M) = ξmax (M))⇒ θ (ξ) = θ (ξmax))

I Since C is a non-empty chain there exists ξ ∈ C such that
∀M ∈ F (ξ (M) = ξmax (M)) and therefore θ (ξ) = θ (ξmax).
ξ ∈ E so θ (ξ) /∈ |ff | and θ (ξmax) = θ (ξ) /∈ |ff |, contradiction.

Therefore ξmax ∈ E is an upper bound for C

Adequacy of bar recursion: chains 6= ∅ have upper bounds

I C non-empty chain

I ξmax (M) =

{
ξ (M) if π1 (ξ (M)) = 0 for some ξ ∈ C

(1, [[canA−∗]]) otherwise

ξmax (⊥) = ⊥
I ξmax ∈ E : we want to prove θ (ξmax) /∈ |ff |.

I Suppose θ (ξmax) ∈ |ff |
I Continuity of θ implies existence of finite F ⊆ Λ such that:

∀ξ (∀M ∈ F (ξ (M) = ξmax (M))⇒ θ (ξ) = θ (ξmax))

I Since C is a non-empty chain there exists ξ ∈ C such that
∀M ∈ F (ξ (M) = ξmax (M)) and therefore θ (ξ) = θ (ξmax).
ξ ∈ E so θ (ξ) /∈ |ff | and θ (ξmax) = θ (ξ) /∈ |ff |, contradiction.

Therefore ξmax ∈ E is an upper bound for C

Adequacy of bar recursion: chains 6= ∅ have upper bounds

I C non-empty chain

I ξmax (M) =

{
ξ (M) if π1 (ξ (M)) = 0 for some ξ ∈ C

(1, [[canA−∗]]) otherwise

ξmax (⊥) = ⊥
I ξmax ∈ E : we want to prove θ (ξmax) /∈ |ff |.

I Suppose θ (ξmax) ∈ |ff |
I Continuity of θ implies existence of finite F ⊆ Λ such that:

∀ξ (∀M ∈ F (ξ (M) = ξmax (M))⇒ θ (ξ) = θ (ξmax))

I Since C is a non-empty chain there exists ξ ∈ C such that
∀M ∈ F (ξ (M) = ξmax (M)) and therefore θ (ξ) = θ (ξmax).
ξ ∈ E so θ (ξ) /∈ |ff | and θ (ξmax) = θ (ξ) /∈ |ff |, contradiction.

Therefore ξmax ∈ E is an upper bound for C

Adequacy of bar recursion: E has no maximal element
I Suppose ξ is a maximal element of E

I [[θ ξ]] = [[ψ (ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y}))))]]

I Let X = {M ∈ Λ | π2 (ξ (M)) ∈ |A− (tt,M)|}
I ψ ∈ |¬∀r t A− (t ∈ X, t)| and [[θ ξ]] = θ (ξ) /∈ |ff | so:

[[ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y})))]] /∈
∣∣∀r t A− (t ∈ X, t)

∣∣
I there is some M ∈ Λ such that:

[[(ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y}))))M]] /∈
∣∣A− (M ∈ X,M)

∣∣
I If π1 (ξ (M)) = 0 then π2 (ξ (M)) /∈ |A− (M ∈ X,M)|, absurd

by definition of X since ξ ∈ E
I Then [[exfA− (ϕ (λy .θ (ξ ∪ {M 7→ y})))]] /∈ |A− (M ∈ X,M)|
I [[ϕ (λy .θ (ξ ∪ {M 7→ y}))]] /∈ |ff | but ϕ ∈ |¬∀b¬A− (b,M)|:

[[λy .θ (ξ ∪ {M 7→ y})]] /∈
∣∣∀b¬A− (b,M)

∣∣
I There exists ζ ∈ |A− (tt,M)| ∪ |A− (ff,M)| such that:

[[θ (ξ ∪ {M 7→ ζ})]] /∈ |ff |
I [[ξ ∪ {M 7→ ζ}]] ∈ E and ξ ≺ [[ξ ∪ {M 7→ ζ}]], contradiction

Adequacy of bar recursion: E has no maximal element
I Suppose ξ is a maximal element of E

I [[θ ξ]] = [[ψ (ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y}))))]]

I Let X = {M ∈ Λ | π2 (ξ (M)) ∈ |A− (tt,M)|}
I ψ ∈ |¬∀r t A− (t ∈ X, t)| and [[θ ξ]] = θ (ξ) /∈ |ff | so:

[[ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y})))]] /∈
∣∣∀r t A− (t ∈ X, t)

∣∣
I there is some M ∈ Λ such that:

[[(ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y}))))M]] /∈
∣∣A− (M ∈ X,M)

∣∣
I If π1 (ξ (M)) = 0 then π2 (ξ (M)) /∈ |A− (M ∈ X,M)|, absurd

by definition of X since ξ ∈ E
I Then [[exfA− (ϕ (λy .θ (ξ ∪ {M 7→ y})))]] /∈ |A− (M ∈ X,M)|
I [[ϕ (λy .θ (ξ ∪ {M 7→ y}))]] /∈ |ff | but ϕ ∈ |¬∀b¬A− (b,M)|:

[[λy .θ (ξ ∪ {M 7→ y})]] /∈
∣∣∀b¬A− (b,M)

∣∣
I There exists ζ ∈ |A− (tt,M)| ∪ |A− (ff,M)| such that:

[[θ (ξ ∪ {M 7→ ζ})]] /∈ |ff |
I [[ξ ∪ {M 7→ ζ}]] ∈ E and ξ ≺ [[ξ ∪ {M 7→ ζ}]], contradiction

Adequacy of bar recursion: E has no maximal element
I Suppose ξ is a maximal element of E

I [[θ ξ]] = [[ψ (ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y}))))]]

I Let X = {M ∈ Λ | π2 (ξ (M)) ∈ |A− (tt,M)|}

I ψ ∈ |¬∀r t A− (t ∈ X, t)| and [[θ ξ]] = θ (ξ) /∈ |ff | so:

[[ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y})))]] /∈
∣∣∀r t A− (t ∈ X, t)

∣∣
I there is some M ∈ Λ such that:

[[(ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y}))))M]] /∈
∣∣A− (M ∈ X,M)

∣∣
I If π1 (ξ (M)) = 0 then π2 (ξ (M)) /∈ |A− (M ∈ X,M)|, absurd

by definition of X since ξ ∈ E
I Then [[exfA− (ϕ (λy .θ (ξ ∪ {M 7→ y})))]] /∈ |A− (M ∈ X,M)|
I [[ϕ (λy .θ (ξ ∪ {M 7→ y}))]] /∈ |ff | but ϕ ∈ |¬∀b¬A− (b,M)|:

[[λy .θ (ξ ∪ {M 7→ y})]] /∈
∣∣∀b¬A− (b,M)

∣∣
I There exists ζ ∈ |A− (tt,M)| ∪ |A− (ff,M)| such that:

[[θ (ξ ∪ {M 7→ ζ})]] /∈ |ff |
I [[ξ ∪ {M 7→ ζ}]] ∈ E and ξ ≺ [[ξ ∪ {M 7→ ζ}]], contradiction

Adequacy of bar recursion: E has no maximal element
I Suppose ξ is a maximal element of E

I [[θ ξ]] = [[ψ (ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y}))))]]

I Let X = {M ∈ Λ | π2 (ξ (M)) ∈ |A− (tt,M)|}
I ψ ∈ |¬∀r t A− (t ∈ X, t)| and [[θ ξ]] = θ (ξ) /∈ |ff | so:

[[ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y})))]] /∈
∣∣∀r t A− (t ∈ X, t)

∣∣

I there is some M ∈ Λ such that:

[[(ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y}))))M]] /∈
∣∣A− (M ∈ X,M)

∣∣
I If π1 (ξ (M)) = 0 then π2 (ξ (M)) /∈ |A− (M ∈ X,M)|, absurd

by definition of X since ξ ∈ E
I Then [[exfA− (ϕ (λy .θ (ξ ∪ {M 7→ y})))]] /∈ |A− (M ∈ X,M)|
I [[ϕ (λy .θ (ξ ∪ {M 7→ y}))]] /∈ |ff | but ϕ ∈ |¬∀b¬A− (b,M)|:

[[λy .θ (ξ ∪ {M 7→ y})]] /∈
∣∣∀b¬A− (b,M)

∣∣
I There exists ζ ∈ |A− (tt,M)| ∪ |A− (ff,M)| such that:

[[θ (ξ ∪ {M 7→ ζ})]] /∈ |ff |
I [[ξ ∪ {M 7→ ζ}]] ∈ E and ξ ≺ [[ξ ∪ {M 7→ ζ}]], contradiction

Adequacy of bar recursion: E has no maximal element
I Suppose ξ is a maximal element of E

I [[θ ξ]] = [[ψ (ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y}))))]]

I Let X = {M ∈ Λ | π2 (ξ (M)) ∈ |A− (tt,M)|}
I ψ ∈ |¬∀r t A− (t ∈ X, t)| and [[θ ξ]] = θ (ξ) /∈ |ff | so:

[[ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y})))]] /∈
∣∣∀r t A− (t ∈ X, t)

∣∣
I there is some M ∈ Λ such that:

[[(ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y}))))M]] /∈
∣∣A− (M ∈ X,M)

∣∣

I If π1 (ξ (M)) = 0 then π2 (ξ (M)) /∈ |A− (M ∈ X,M)|, absurd
by definition of X since ξ ∈ E

I Then [[exfA− (ϕ (λy .θ (ξ ∪ {M 7→ y})))]] /∈ |A− (M ∈ X,M)|
I [[ϕ (λy .θ (ξ ∪ {M 7→ y}))]] /∈ |ff | but ϕ ∈ |¬∀b¬A− (b,M)|:

[[λy .θ (ξ ∪ {M 7→ y})]] /∈
∣∣∀b¬A− (b,M)

∣∣
I There exists ζ ∈ |A− (tt,M)| ∪ |A− (ff,M)| such that:

[[θ (ξ ∪ {M 7→ ζ})]] /∈ |ff |
I [[ξ ∪ {M 7→ ζ}]] ∈ E and ξ ≺ [[ξ ∪ {M 7→ ζ}]], contradiction

Adequacy of bar recursion: E has no maximal element
I Suppose ξ is a maximal element of E

I [[θ ξ]] = [[ψ (ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y}))))]]

I Let X = {M ∈ Λ | π2 (ξ (M)) ∈ |A− (tt,M)|}
I ψ ∈ |¬∀r t A− (t ∈ X, t)| and [[θ ξ]] = θ (ξ) /∈ |ff | so:

[[ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y})))]] /∈
∣∣∀r t A− (t ∈ X, t)

∣∣
I there is some M ∈ Λ such that:

[[(ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y}))))M]] /∈
∣∣A− (M ∈ X,M)

∣∣
I If π1 (ξ (M)) = 0 then π2 (ξ (M)) /∈ |A− (M ∈ X,M)|, absurd

by definition of X since ξ ∈ E

I Then [[exfA− (ϕ (λy .θ (ξ ∪ {M 7→ y})))]] /∈ |A− (M ∈ X,M)|
I [[ϕ (λy .θ (ξ ∪ {M 7→ y}))]] /∈ |ff | but ϕ ∈ |¬∀b¬A− (b,M)|:

[[λy .θ (ξ ∪ {M 7→ y})]] /∈
∣∣∀b¬A− (b,M)

∣∣
I There exists ζ ∈ |A− (tt,M)| ∪ |A− (ff,M)| such that:

[[θ (ξ ∪ {M 7→ ζ})]] /∈ |ff |
I [[ξ ∪ {M 7→ ζ}]] ∈ E and ξ ≺ [[ξ ∪ {M 7→ ζ}]], contradiction

Adequacy of bar recursion: E has no maximal element
I Suppose ξ is a maximal element of E

I [[θ ξ]] = [[ψ (ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y}))))]]

I Let X = {M ∈ Λ | π2 (ξ (M)) ∈ |A− (tt,M)|}
I ψ ∈ |¬∀r t A− (t ∈ X, t)| and [[θ ξ]] = θ (ξ) /∈ |ff | so:

[[ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y})))]] /∈
∣∣∀r t A− (t ∈ X, t)

∣∣
I there is some M ∈ Λ such that:

[[(ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y}))))M]] /∈
∣∣A− (M ∈ X,M)

∣∣
I If π1 (ξ (M)) = 0 then π2 (ξ (M)) /∈ |A− (M ∈ X,M)|, absurd

by definition of X since ξ ∈ E
I Then [[exfA− (ϕ (λy .θ (ξ ∪ {M 7→ y})))]] /∈ |A− (M ∈ X,M)|

I [[ϕ (λy .θ (ξ ∪ {M 7→ y}))]] /∈ |ff | but ϕ ∈ |¬∀b¬A− (b,M)|:
[[λy .θ (ξ ∪ {M 7→ y})]] /∈

∣∣∀b¬A− (b,M)
∣∣

I There exists ζ ∈ |A− (tt,M)| ∪ |A− (ff,M)| such that:

[[θ (ξ ∪ {M 7→ ζ})]] /∈ |ff |
I [[ξ ∪ {M 7→ ζ}]] ∈ E and ξ ≺ [[ξ ∪ {M 7→ ζ}]], contradiction

Adequacy of bar recursion: E has no maximal element
I Suppose ξ is a maximal element of E

I [[θ ξ]] = [[ψ (ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y}))))]]

I Let X = {M ∈ Λ | π2 (ξ (M)) ∈ |A− (tt,M)|}
I ψ ∈ |¬∀r t A− (t ∈ X, t)| and [[θ ξ]] = θ (ξ) /∈ |ff | so:

[[ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y})))]] /∈
∣∣∀r t A− (t ∈ X, t)

∣∣
I there is some M ∈ Λ such that:

[[(ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y}))))M]] /∈
∣∣A− (M ∈ X,M)

∣∣
I If π1 (ξ (M)) = 0 then π2 (ξ (M)) /∈ |A− (M ∈ X,M)|, absurd

by definition of X since ξ ∈ E
I Then [[exfA− (ϕ (λy .θ (ξ ∪ {M 7→ y})))]] /∈ |A− (M ∈ X,M)|
I [[ϕ (λy .θ (ξ ∪ {M 7→ y}))]] /∈ |ff | but ϕ ∈ |¬∀b¬A− (b,M)|:

[[λy .θ (ξ ∪ {M 7→ y})]] /∈
∣∣∀b¬A− (b,M)

∣∣

I There exists ζ ∈ |A− (tt,M)| ∪ |A− (ff,M)| such that:

[[θ (ξ ∪ {M 7→ ζ})]] /∈ |ff |
I [[ξ ∪ {M 7→ ζ}]] ∈ E and ξ ≺ [[ξ ∪ {M 7→ ζ}]], contradiction

Adequacy of bar recursion: E has no maximal element
I Suppose ξ is a maximal element of E

I [[θ ξ]] = [[ψ (ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y}))))]]

I Let X = {M ∈ Λ | π2 (ξ (M)) ∈ |A− (tt,M)|}
I ψ ∈ |¬∀r t A− (t ∈ X, t)| and [[θ ξ]] = θ (ξ) /∈ |ff | so:

[[ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y})))]] /∈
∣∣∀r t A− (t ∈ X, t)

∣∣
I there is some M ∈ Λ such that:

[[(ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y}))))M]] /∈
∣∣A− (M ∈ X,M)

∣∣
I If π1 (ξ (M)) = 0 then π2 (ξ (M)) /∈ |A− (M ∈ X,M)|, absurd

by definition of X since ξ ∈ E
I Then [[exfA− (ϕ (λy .θ (ξ ∪ {M 7→ y})))]] /∈ |A− (M ∈ X,M)|
I [[ϕ (λy .θ (ξ ∪ {M 7→ y}))]] /∈ |ff | but ϕ ∈ |¬∀b¬A− (b,M)|:

[[λy .θ (ξ ∪ {M 7→ y})]] /∈
∣∣∀b¬A− (b,M)

∣∣
I There exists ζ ∈ |A− (tt,M)| ∪ |A− (ff,M)| such that:

[[θ (ξ ∪ {M 7→ ζ})]] /∈ |ff |

I [[ξ ∪ {M 7→ ζ}]] ∈ E and ξ ≺ [[ξ ∪ {M 7→ ζ}]], contradiction

Adequacy of bar recursion: E has no maximal element
I Suppose ξ is a maximal element of E

I [[θ ξ]] = [[ψ (ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y}))))]]

I Let X = {M ∈ Λ | π2 (ξ (M)) ∈ |A− (tt,M)|}
I ψ ∈ |¬∀r t A− (t ∈ X, t)| and [[θ ξ]] = θ (ξ) /∈ |ff | so:

[[ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y})))]] /∈
∣∣∀r t A− (t ∈ X, t)

∣∣
I there is some M ∈ Λ such that:

[[(ξ | λx .exfA− (ϕ (λy .θ (ξ ∪ {x 7→ y}))))M]] /∈
∣∣A− (M ∈ X,M)

∣∣
I If π1 (ξ (M)) = 0 then π2 (ξ (M)) /∈ |A− (M ∈ X,M)|, absurd

by definition of X since ξ ∈ E
I Then [[exfA− (ϕ (λy .θ (ξ ∪ {M 7→ y})))]] /∈ |A− (M ∈ X,M)|
I [[ϕ (λy .θ (ξ ∪ {M 7→ y}))]] /∈ |ff | but ϕ ∈ |¬∀b¬A− (b,M)|:

[[λy .θ (ξ ∪ {M 7→ y})]] /∈
∣∣∀b¬A− (b,M)

∣∣
I There exists ζ ∈ |A− (tt,M)| ∪ |A− (ff,M)| such that:

[[θ (ξ ∪ {M 7→ ζ})]] /∈ |ff |
I [[ξ ∪ {M 7→ ζ}]] ∈ E and ξ ≺ [[ξ ∪ {M 7→ ζ}]], contradiction

