An interpretation of system F through bar recursion

Valentin Blot
University of Bath
research funded by the UK EPSRC

Realizability interpretations of PA2

- Second-order arithmetic (PA2):
- Quantification on \mathbb{N} : $\forall n$
- Quantification on $\mathcal{P}(\mathbb{N}): \forall X$
- Induction: $\forall X(X(0) \Rightarrow \forall n(X(n) \Rightarrow X(n+1)) \Rightarrow \forall n X(n))$
- Comprehension: $\exists X \forall n(A[n] \Leftrightarrow X(n))$

Realizability interpretations of PA2

- Second-order arithmetic (PA2):
- Quantification on \mathbb{N} : $\forall n$
- Quantification on $\mathcal{P}(\mathbb{N}): \forall X$
- Induction: $\forall X(X(0) \Rightarrow \forall n(X(n) \Rightarrow X(n+1)) \Rightarrow \forall n X(n))$
- Comprehension: $\exists X \forall n(A[n] \Leftrightarrow X(n))$
- Realizability for PA2
- in polymorphic λ-calculus:
- Krivine realizability
- $\langle\lambda x \cdot x, \lambda x \cdot x\rangle \Vdash \exists X \forall n(A[n] \Leftrightarrow X(n))$

Realizability interpretations of PA2

- Second-order arithmetic (PA2):
- Quantification on \mathbb{N} : $\forall n$
- Quantification on $\mathcal{P}(\mathbb{N})$: $\forall X$
- Induction: $\forall X(X(0) \Rightarrow \forall n(X(n) \Rightarrow X(n+1)) \Rightarrow \forall n X(n))$
- Comprehension: $\exists X \forall n(A[n] \Leftrightarrow X(n))$
- Realizability for PA2
- in polymorphic λ-calculus:
- Krivine realizability
- $\langle\lambda x . x, \lambda x . x\rangle \Vdash \exists X \forall n(A[n] \Leftrightarrow X(n))$
- in system $\mathrm{T}+$ bar recursion (simply-typed)
- Spector, Kohlenbach, Berger-Oliva, Berardi-Bezem-Coquand
- brec $\Vdash \forall n \exists b(A[n] \Leftrightarrow b) \Rightarrow \exists X \forall n(A[n] \Leftrightarrow X(n))$
- $\mid \vdash \forall n \exists b(A[n] \Leftrightarrow b)$

Weak head normalization of system F in PA2

Definition (Weak head reduction)

$$
(\lambda x \cdot M) N P_{0} \ldots P_{n-1} \succ M[N / x] P_{0} \ldots P_{n-1}
$$

Weak head normalization of system F in PA2

Definition (Weak head reduction)

$$
(\lambda x . M) N P_{0} \ldots P_{n-1} \succ M[N / x] P_{0} \ldots P_{n-1}
$$

Theorem (Weak head normalization of system F)
If M : T in system F then weak head reduction terminates on M

Weak head normalization of system F in PA2

Definition (Weak head reduction)

$$
(\lambda x . M) N P_{0} \ldots P_{n-1} \succ M[N / x] P_{0} \ldots P_{n-1}
$$

Theorem (Weak head normalization of system F)
If M : T in system F then weak head reduction terminates on M

- Reducibility candidates (sets of λ-terms with some properties)
- Not formalizable in PA2 (Gödel's incompleteness)
- But for each M : T there is a proof in PA2 that M normalizes
- Indeed, f provably total in PA2 iff f representable in F

Weak head normalization of system F in PA2

Definition (Weak head reduction)

$$
(\lambda x . M) N P_{0} \ldots P_{n-1} \succ M[N / x] P_{0} \ldots P_{n-1}
$$

Theorem (Weak head normalization of system F)
If M : T in system F then weak head reduction terminates on M

- Reducibility candidates (sets of λ-terms with some properties)
- Not formalizable in PA2 (Gödel's incompleteness)
- But for each M : T there is a proof in PA2 that M normalizes
- Indeed, f provably total in PA2 iff f representable in F

The translation of $M: T$ is the bar recursive realizability interpretation of its normalization proof

Outline

A logic for λ-terms (bye bye Gödelitis)

A simply-typed total programming language with bar recusion

A realizability model for our logic

The realizability interpretation of normalization of $M: T$

The translation of $M: T$

A logic for λ-terms (bye bye Gödelitis)

Terms

Multi-sorted first-order logic

- Natural numbers: m
- λ-terms (de Bruijn indices): M
- Applicative contexts (stacks of terms): Π
- Sets of λ-terms: X
- Booleans: Φ

Terms

Multi-sorted first-order logic

- Natural numbers: m
- λ-terms (de Bruijn indices): M
- Applicative contexts (stacks of terms): Π
- Sets of λ-terms: X
- Booleans: Φ

$$
\begin{array}{rlrl}
m & ::=i|0| S m \quad M & ::=t|\underline{m}| \lambda . M|M \Pi| M[m \mapsto \Pi] \\
\Pi & ::=\pi|\langle \rangle|\langle\Pi, M\rangle \quad X \quad \Phi \quad:=b|t t| f \mid M \in X
\end{array}
$$

i, t, π, X and b range over countable sets of sorted variables

Substitutions

Substitutions are part of the language because:

Substitutions

Substitutions are part of the language because:

- A condition for X to be a reducibility candidate is:

$$
\forall t \forall u \forall \pi(t[0 \mapsto u] \pi \in X \Longrightarrow(\lambda . t) u \pi \in X)
$$

Substitutions

Substitutions are part of the language because:

- A condition for X to be a reducibility candidate is:

$$
\forall t \forall u \forall \pi(t[0 \mapsto u] \pi \in X \Longrightarrow(\lambda . t) u \pi \in X)
$$

- The induction hypothesis of the normalization theorem is:

$$
\begin{aligned}
T_{n-1}, \ldots, T_{0} & \vdash M: U \\
& \Longrightarrow \forall t_{i} \in\left[T_{i}\right], M\left[0 \mapsto\left\langle t_{0}, \ldots, t_{n-1}\right\rangle\right] \in[U]
\end{aligned}
$$

Substitutions

Substitutions are part of the language because:

- A condition for X to be a reducibility candidate is:

$$
\forall t \forall u \forall \pi(t[0 \mapsto u] \pi \in X \Longrightarrow(\lambda . t) u \pi \in X)
$$

- The induction hypothesis of the normalization theorem is:

$$
\begin{aligned}
T_{n-1}, \ldots, T_{0} & \vdash M: U \\
& \Longrightarrow \forall t_{i} \in\left[T_{i}\right], M\left[0 \mapsto\left\langle t_{0}, \ldots, t_{n-1}\right\rangle\right] \in[U]
\end{aligned}
$$

$M\left[m \mapsto\left\langle M_{0}, \ldots, M_{n-1}\right\rangle\right]$ replaces variables:

$$
\underline{0}, \quad \ldots, \quad \underline{m-1}, \quad \underline{m}, \quad \ldots, \quad \underline{m+n-1}, \quad \underline{m+n}, \quad \ldots
$$

with terms:

$$
\underline{0}, \quad \ldots, \quad \underline{m-1}, \quad M_{0}, \quad \ldots, \quad M_{n-1}
$$

$$
\underline{m}
$$

Atomic predicates

$$
P::=\Phi\left|M \downarrow^{m}\right|(m)|(M)|(\Pi)
$$

Atomic predicates

$$
P::=\Phi\left|M \downarrow^{m}\right|(m)|(M)|(\Pi)
$$

- Φ means " $\Phi=t t$ "
- $M \downarrow^{m}$ means that weak head reduction terminates on M in at most m steps

Atomic predicates

$$
P::=\Phi\left|M \downarrow^{m}\right|(m)|(M)|(\Pi)
$$

- Φ means " $\Phi=t t$ "
- $M \downarrow^{m}$ means that weak head reduction terminates on M in at most m steps
- (-) are relativization predicates: their unique realizer is their value (I will come back to this)
- no (X) or (Φ) : sets and booleans never need to be relativized

Formulas

$$
A, B::=P|A \Rightarrow B| A \wedge B|\forall i A| \forall t A|\forall \pi A| \forall X A \mid \forall b A
$$

Formulas

$$
A, B::=P|A \Rightarrow B| A \wedge B|\forall i A| \forall t A|\forall \pi A| \forall X A \mid \forall b A
$$

- Negation defined as: $\neg A \triangleq A \Rightarrow f$
- Existentials encoded as: $\exists i A \triangleq \neg \forall i \neg A$, same for t, π, X, b

Formulas

$$
A, B::=P|A \Rightarrow B| A \wedge B|\forall i A| \forall t A|\forall \pi A| \forall X A \mid \forall b A
$$

- Negation defined as: $\neg A \triangleq A \Rightarrow f$
- Existentials encoded as: $\exists i A \triangleq \neg \forall i \neg A$, same for t, π, X, b
- Relativized quantifications defined as: $\forall^{r} i A \triangleq \forall i((i) \Rightarrow A)$ and $\exists r i A \triangleq \neg \forall^{r} i \neg A$, same for t, π
- A realizer of $\forall^{r} i A$ can depend on i, a realizer of $\forall i A$ cannot

Formulas

$$
A, B::=P|A \Rightarrow B| A \wedge B|\forall i A| \forall t A|\forall \pi A| \forall X A \mid \forall b A
$$

- Negation defined as: $\neg A \triangleq A \Rightarrow f$
- Existentials encoded as: $\exists i A \triangleq \neg \forall i \neg A$, same for t, π, X, b
- Relativized quantifications defined as: $\forall^{r} i A \triangleq \forall i((i) \Rightarrow A)$ and $\exists r^{r} i A \triangleq \neg \forall^{r} i \neg A$, same for t, π
- A realizer of $\forall^{r} i A$ can depend on i, a realizer of $\forall i A$ cannot
- Normalization defined as: $M \downarrow \triangleq \exists r i M \not \downarrow^{i}$

Weak head normalization, formally (1)

If $A(t)$ is a formula with free variable t, define:

$$
\begin{aligned}
\operatorname{RedCand}(A) & \triangleq\left(\forall^{r} \pi A(\underline{0} \pi) \wedge \forall^{r} t(A(t) \Rightarrow t \downarrow)\right) \\
& \wedge \forall^{r} t \forall^{r} u \forall^{r} \pi(A(t[0 \mapsto\langle u\rangle] \pi) \Rightarrow A((\lambda . t)\langle u\rangle \pi))
\end{aligned}
$$

Weak head normalization, formally (1)

If $A(t)$ is a formula with free variable t, define:

$$
\begin{aligned}
\operatorname{RedC} \text { and }(A) & \triangleq\left(\forall^{r} \pi A(\underline{0} \pi) \wedge \forall^{r} t(A(t) \Rightarrow t \downarrow)\right) \\
& \wedge \forall^{r} t \forall^{r} u \forall^{r} \pi(A(t[0 \mapsto\langle u\rangle] \pi) \Rightarrow A((\lambda . t)\langle u\rangle \pi))
\end{aligned}
$$

If T type of system F built from variables X of the logic, define $R C_{T}(t)$ with free variables \vec{X} and t :

$$
\begin{gathered}
R C_{X}(t) \triangleq t \in X \quad R C_{T \rightarrow U}(t) \triangleq \forall^{r} u\left(R C_{T}(u) \Rightarrow R C_{U}(t u)\right) \\
R C_{\forall X T}(t) \triangleq \forall X\left(\mathcal{R e d C} \text { and }(\bar{X}) \Rightarrow R C_{T}(t)\right)
\end{gathered}
$$

where $\bar{X}(t) \triangleq t \in X . R C_{T}(t)$ is what we wrote $t \in[T]$ earlier

Weak head normalization, formally (2)

The proof goes in three steps:

Weak head normalization, formally (2)

The proof goes in three steps:

- RedC and (\Downarrow) where $\Downarrow(t) \triangleq t \downarrow$

Weak head normalization, formally (2)

The proof goes in three steps:

- RedCand (\Downarrow) where $\Downarrow(t) \triangleq t \downarrow$
- If T type of F with $\mathrm{FV}(T)=\left\{X_{0}, \ldots, X_{n-1}\right\}$ then:

$$
\begin{aligned}
& \forall X_{0}\left(\operatorname { R e d C } \text { and } (\overline { X _ { 0 } }) \Rightarrow \ldots \Rightarrow \forall X _ { n - 1 } \left(\operatorname{RedC} \text { and }\left(\overline{X_{n-1}}\right)\right.\right. \\
&\left.\left.\Rightarrow \operatorname{RedC} \text { and }\left(R C_{T}\right)\right) \ldots\right)
\end{aligned}
$$

Weak head normalization, formally (2)

The proof goes in three steps:

- RedC and (\Downarrow) where $\Downarrow(t) \triangleq t \downarrow$
- If T type of F with $\mathrm{FV}(T)=\left\{X_{0}, \ldots, X_{n-1}\right\}$ then:

$$
\begin{aligned}
& \forall X_{0}\left(\operatorname { R e d C } \text { and } (\overline { X _ { 0 } }) \Rightarrow \ldots \Rightarrow \forall X _ { n - 1 } \left(\mathcal{R e d C} \text { and }\left(\overline{X_{n-1}}\right)\right.\right. \\
&\left.\left.\Rightarrow \operatorname{RedC} \text { and }\left(R C_{T}\right)\right) \ldots\right)
\end{aligned}
$$

- If $\mathrm{FV}\left(T_{0}, \ldots, T_{m-1}, U\right) \subseteq\left\{X_{0}, \ldots, X_{n-1}\right\}$ and $T_{m-1}, \ldots, T_{0} \vdash M: U$ typing derivation in F then:

$$
\begin{aligned}
& \forall X_{0}\left(\mathcal { R e d C } \text { and } (\overline { X _ { 0 } }) \Rightarrow \ldots \Rightarrow \forall X _ { n - 1 } \left(\operatorname{RedC} \text { and }\left(\overline{X_{n-1}}\right)\right.\right. \\
& \Rightarrow \forall^{r} t_{m-1}\left(R C _ { T _ { m - 1 } } (t _ { m - 1 }) \Rightarrow \ldots \Rightarrow \forall ^ { r } t _ { 0 } \left(R C_{T_{0}}\left(t_{0}\right)\right.\right. \\
& \left.\left.\left.\left.\quad \Rightarrow R C_{U}\left(M\left[0 \mapsto\left\langle t_{0}, \ldots, t_{m-1}\right\rangle\right]\right)\right) \ldots\right)\right) \ldots\right)
\end{aligned}
$$

Weak head normalization, formally (3)

In particular if M is a closed term of closed type T in F then:

$$
R C_{T}(M) \text { and } \operatorname{RedC} \text { and }\left(R C_{T}\right)
$$

Weak head normalization, formally (3)

In particular if M is a closed term of closed type T in F then:

$$
R C_{T}(M) \text { and } \mathcal{R e d C} \text { and }\left(R C_{T}\right)
$$

therefore by definition of RedC and (${ }_{-}$) we obtain:

$$
M \downarrow \text { i.e. } \exists^{r} i M \downarrow^{i}
$$

Weak head normalization, formally (3)

In particular if M is a closed term of closed type T in F then:

$$
R C_{T}(M) \text { and } \mathcal{R e d C} \text { and }\left(R C_{T}\right)
$$

therefore by definition of $\mathcal{R e d C}$ and (${ }_{-}$) we obtain:

$$
M \downarrow \text { i.e. } \exists^{r} i M \downarrow^{i}
$$

Which is a Σ_{1}^{0} formula

Weak head normalization, formally (3)

In particular if M is a closed term of closed type T in F then:

$$
R C_{T}(M) \text { and } \mathcal{R e d C} \text { and }\left(R C_{T}\right)
$$

therefore by definition of $\mathcal{R e d C}$ and ($)_{\text {) }}$ we obtain:

$$
M \downarrow \text { i.e. } \exists^{r} i M \downarrow^{i}
$$

Which is a Σ_{1}^{0} formula
\rightsquigarrow classical extraction will give some $n \in \mathbb{N}$ such that M reaches a weak head normal form in at most n steps!

Weak head normalization, formally (3)

In particular if M is a closed term of closed type T in F then:

$$
R C_{T}(M) \text { and } \operatorname{RedC} \text { and }\left(R C_{T}\right)
$$

therefore by definition of $\mathcal{R e d C}$ and ($)_{\text {) }}$ we obtain:

$$
M \downarrow \text { i.e. } \exists^{r} i M \downarrow^{i}
$$

Which is a Σ_{1}^{0} formula
\rightsquigarrow classical extraction will give some $n \in \mathbb{N}$ such that M reaches a weak head normal form in at most n steps!

Then it is straightforward to compute this normal form with primitive recursion

A simply-typed total programming language with bar recusion

Simply-typed λ-calculus with products

Simple types:

$$
\sigma, \tau \quad::=\kappa|\top| \sigma \rightarrow \tau \mid \sigma \times \tau
$$

where κ ranges over a set of base types

Simply-typed λ-calculus with products

Simple types:

$$
\sigma, \tau::=\kappa|\top| \sigma \rightarrow \tau \mid \sigma \times \tau
$$

where κ ranges over a set of base types
Typing rules:

$$
\begin{gathered}
\overline{\Gamma, x: \sigma \vdash x: \sigma} \quad \overline{\Gamma \vdash c: \sigma}(c: \sigma) \in \mathcal{C s t} \\
\frac{\Gamma, x: \sigma \vdash \mathrm{M}: \tau}{\Gamma \vdash \lambda x \cdot \mathrm{M}: \sigma \rightarrow \tau} \quad \frac{\Gamma \vdash \mathrm{M}: \sigma \rightarrow \tau \quad \Gamma \vdash \mathrm{N}: \sigma}{\Gamma \vdash \mathrm{MN}: \tau} \\
\frac{\Gamma \vdash \mathrm{M}: \sigma}{\Gamma \vdash\langle\mathrm{M}, \mathrm{~N}\rangle: \sigma \times \tau} \quad \overline{\mathrm{N}}: \tau \\
\frac{\Gamma \vdash \mathrm{M}: \sigma \times \tau}{\Gamma \vdash \mathrm{p}_{1} \mathrm{M}: \sigma} \quad \frac{\Gamma \vdash \mathrm{M}: \sigma \times \tau}{\Gamma \vdash \mathrm{p}_{2} \mathrm{M}: \tau}
\end{gathered}
$$

where $\mathcal{C} s t$ is a set of typed constants

System $\wedge T$

- 3 base types:
- ι type of natural numbers
- λ type of λ-terms
- λ^{\diamond} type of finite lists of λ-terms

System $\wedge T$

- 3 base types:
- ι type of natural numbers
- λ type of λ-terms
- λ^{\diamond} type of finite lists of λ-terms
- \mathcal{C} st consists of constructors and iterators on these:
- for ι :
z: ८ $\mathrm{s}: \iota \rightarrow \iota$
$\mathrm{it}_{\iota}: \sigma \rightarrow(\sigma \rightarrow \sigma) \rightarrow \iota \rightarrow \sigma$
- for λ : var: $\iota \rightarrow \lambda \quad$ abs $: \lambda \rightarrow \lambda \quad$ app $: \lambda \rightarrow \lambda \rightarrow \lambda$

$$
\operatorname{it}_{\lambda}:(\iota \rightarrow \sigma) \rightarrow(\sigma \rightarrow \sigma) \rightarrow(\sigma \rightarrow \sigma \rightarrow \sigma) \rightarrow \lambda \rightarrow \sigma
$$

- for λ^{\diamond} : nil : λ^{\diamond} cons: $\lambda^{\diamond} \rightarrow \lambda \rightarrow \lambda^{\diamond}$

$$
\mathrm{it}_{\lambda \diamond}: \sigma \rightarrow(\sigma \rightarrow \lambda \rightarrow \sigma) \rightarrow \lambda^{\diamond} \rightarrow \sigma
$$

System $\wedge T$

- 3 base types:
- ι type of natural numbers
- λ type of λ-terms
- λ^{\diamond} type of finite lists of λ-terms
- $\mathcal{C} s t$ consists of constructors and iterators on these:
- for $\iota: \quad \mathrm{z}: \iota \quad \mathrm{s}: \iota \rightarrow \iota \quad \mathrm{it}_{\iota}: \sigma \rightarrow(\sigma \rightarrow \sigma) \rightarrow \iota \rightarrow \sigma$
- for λ : $\operatorname{var}: \iota \rightarrow \lambda \quad$ abs $: \lambda \rightarrow \lambda \quad$ app $: \lambda \rightarrow \lambda \rightarrow \lambda$

$$
\operatorname{it}_{\lambda}:(\iota \rightarrow \sigma) \rightarrow(\sigma \rightarrow \sigma) \rightarrow(\sigma \rightarrow \sigma \rightarrow \sigma) \rightarrow \lambda \rightarrow \sigma
$$

- for λ^{\diamond} : nil : λ^{\diamond} cons : $\lambda^{\diamond} \rightarrow \lambda \rightarrow \lambda^{\diamond}$

$$
\mathrm{it}_{\lambda \diamond}: \sigma \rightarrow(\sigma \rightarrow \lambda \rightarrow \sigma) \rightarrow \lambda^{\diamond} \rightarrow \sigma
$$

- Easy to define:
- $a p p^{\diamond}$ s.t.:

$$
\operatorname{app}^{\diamond} \mathrm{M}\left\langle\mathrm{~N}_{0} \ldots \mathrm{~N}_{n-1}\right\rangle \rightsquigarrow^{*} \operatorname{app}\left(\ldots\left(\operatorname{app} M \mathrm{P}_{0}\right) \ldots\right) \mathrm{P}_{n-1}
$$

where $\left\langle\mathrm{N}_{0} \ldots \mathrm{~N}_{n-1}\right\rangle \triangleq \operatorname{cons}\left(\ldots\left(\right.\right.$ cons nil $\left.\left.\mathrm{N}_{0}\right) \ldots\right) \mathrm{N}_{n-1}$ and $N_{i} \rightsquigarrow{ }^{*} \mathrm{P}_{i}$

- $\mathrm{M}[\mathrm{N} \mapsto \mathrm{P}]$ for $\mathrm{M}: \lambda, \mathrm{N}: \iota, \mathrm{P}: \lambda$ implementing substitution
- eq s.t. eq $\mathrm{MN} \rightsquigarrow^{*} z$ iff $\mathrm{M} \rightsquigarrow^{*} \mathrm{P}$ and $\mathrm{N} \rightsquigarrow^{*} \mathrm{P}$ for some P

Preliminaries for bar recursion: observable partial functions

- Type of observable partial functions on λ :

$$
\sigma^{\dagger} \triangleq \lambda \rightarrow \iota \times \sigma
$$

- $\mathrm{p}_{1}(\mathrm{MN}) \rightsquigarrow{ }^{*} \mathrm{z}$ iff $\mathrm{M}: \sigma^{\dagger}$ defined in $\mathrm{N}: \lambda$ with value $\mathrm{p}_{2}(\mathrm{MN})$

Preliminaries for bar recursion: observable partial functions

- Type of observable partial functions on λ :

$$
\sigma^{\dagger} \triangleq \lambda \rightarrow \iota \times \sigma
$$

- $\mathrm{p}_{1}(\mathrm{MN}) \rightsquigarrow^{*} \mathrm{z}$ iff $\mathrm{M}: \sigma^{\dagger}$ defined in $\mathrm{N}: \lambda$ with value $\mathrm{p}_{2}(\mathrm{MN})$
- Empty partial function $\left\}: \sigma^{\dagger}\right.$ s.t. $\left\} \mathrm{M} \rightsquigarrow^{*}\left\langle\mathrm{sz}, \operatorname{can}_{\sigma}\right\rangle\right.$
- $\operatorname{can}_{\sigma}: \sigma$ is an inductively defined canonical term

Preliminaries for bar recursion: observable partial functions

- Type of observable partial functions on λ :

$$
\sigma^{\dagger} \triangleq \lambda \rightarrow \iota \times \sigma
$$

- $\mathrm{p}_{1}(\mathrm{MN}) \rightsquigarrow^{*} \mathrm{z}$ iff $\mathrm{M}: \sigma^{\dagger}$ defined in $\mathrm{N}: \lambda$ with value $\mathrm{p}_{2}(\mathrm{MN})$
- Empty partial function $\left\}: \sigma^{\dagger}\right.$ s.t. $\left\} \mathrm{M} \rightsquigarrow^{*}\left\langle\mathrm{sz}, \operatorname{can}_{\sigma}\right\rangle\right.$
- $\operatorname{can}_{\sigma}: \sigma$ is an inductively defined canonical term
- M \mid N completes $\mathrm{M}: \sigma^{\dagger}$ with $\mathrm{N}: \lambda \rightarrow \sigma$, i.e.:

$$
M \left\lvert\, N \rightsquigarrow^{*} \begin{cases}p_{2}(M P) & \text { if } p_{1}(M P) \rightsquigarrow^{*} z \\ N P & \text { otherwise }\end{cases}\right.
$$

Preliminaries for bar recursion: observable partial functions

- Type of observable partial functions on λ :

$$
\sigma^{\dagger} \triangleq \lambda \rightarrow \iota \times \sigma
$$

- $\mathrm{p}_{1}(\mathrm{MN}) \rightsquigarrow^{*} \mathrm{z}$ iff $\mathrm{M}: \sigma^{\dagger}$ defined in $\mathrm{N}: \lambda$ with value $\mathrm{p}_{2}(\mathrm{MN})$
- Empty partial function $\left\}: \sigma^{\dagger}\right.$ s.t. $\left\} \mathrm{M} \rightsquigarrow^{*}\left\langle\mathrm{sz}, \operatorname{can}_{\sigma}\right\rangle\right.$
- $\operatorname{can}_{\sigma}: \sigma$ is an inductively defined canonical term
- M \mid N completes $\mathrm{M}: \sigma^{\dagger}$ with $\mathrm{N}: \lambda \rightarrow \sigma$, i.e.:

$$
M \left\lvert\, N \rightsquigarrow^{*} \begin{cases}p_{2}(M P) & \text { if } p_{1}(M P) \rightsquigarrow^{*} z \\ N P & \text { otherwise }\end{cases}\right.
$$

- $\mathrm{M} \cup\{\mathrm{N} \mapsto \mathrm{P}\}$ extends $\mathrm{M}: \sigma^{\dagger}$ with $\mathrm{P}: \sigma$ at $\mathrm{N}: \lambda$, i.e.:

$$
(M \cup\{N \mapsto P\}) Q \rightsquigarrow^{*} \begin{cases}\langle z, P\rangle & \text { if eqNQ } \rightsquigarrow^{*} z \\ M Q & \text { otherwise }\end{cases}
$$

System $\wedge T_{b r}$

New constant:

$$
\text { brec : }((\sigma \rightarrow \iota) \rightarrow \sigma) \rightarrow((\lambda \rightarrow \sigma) \rightarrow \iota) \rightarrow \sigma^{\dagger} \rightarrow \iota
$$

System $\wedge T_{b r}$

New constant:

$$
\text { brec : }((\sigma \rightarrow \iota) \rightarrow \sigma) \rightarrow((\lambda \rightarrow \sigma) \rightarrow \iota) \rightarrow \sigma^{\dagger} \rightarrow \iota
$$

Reduction:

$$
\operatorname{brec} \operatorname{MNP} \rightsquigarrow \mathrm{N}(\mathrm{P} \mid \lambda x \cdot \mathrm{M}(\lambda y \cdot \operatorname{brec} \operatorname{MN}(\mathrm{P} \cup\{x \mapsto y\})))
$$

System $\wedge T_{b r}$

New constant:

$$
\text { brec : }((\sigma \rightarrow \iota) \rightarrow \sigma) \rightarrow((\lambda \rightarrow \sigma) \rightarrow \iota) \rightarrow \sigma^{\dagger} \rightarrow \iota
$$

Reduction:

$$
\operatorname{brec} \operatorname{MNP} \rightsquigarrow \mathbb{N}(\mathrm{P} \mid \lambda x \cdot \mathrm{M}(\lambda y \cdot \operatorname{brec} \operatorname{MN}(\mathrm{P} \cup\{x \mapsto y\})))
$$

N continuous \Rightarrow looks at only finitely many values of:

$$
\mathrm{P} \mid \lambda x \cdot \mathrm{M}(\lambda y \cdot \operatorname{brec} \mathrm{MN}(\mathrm{P} \cup\{x \mapsto y\}))
$$

System $\wedge T_{b r}$

New constant:

$$
\text { brec : }((\sigma \rightarrow \iota) \rightarrow \sigma) \rightarrow((\lambda \rightarrow \sigma) \rightarrow \iota) \rightarrow \sigma^{\dagger} \rightarrow \iota
$$

Reduction:

$$
\operatorname{brec} \operatorname{MNP} \rightsquigarrow \mathbb{N}(\mathrm{P} \mid \lambda x \cdot \mathrm{M}(\lambda y \cdot \operatorname{brec} \mathrm{MN}(\mathrm{P} \cup\{x \mapsto y\})))
$$

N continuous \Rightarrow looks at only finitely many values of:

$$
\mathrm{P} \mid \lambda x \cdot \mathrm{M}(\lambda y \cdot \operatorname{brec} \mathrm{MN}(\mathrm{P} \cup\{x \mapsto y\}))
$$

- if P defined at all these values: same result as $\mathrm{N}\left(\mathrm{P} \mid \operatorname{can}_{\lambda \rightarrow \sigma}\right)$
- if N needs value at $\mathrm{Q}: \lambda$ and $\mathrm{p}_{1}(\mathrm{PQ}) \nLeftarrow \iota^{*} z$, then call recursively brec MN $(\mathrm{P} \cup\{\mathrm{Q} \mapsto y\})$ where y is provided by M
- It terminates because N is continuous

Domain semantics of system $\Lambda T_{b r}$

- For each type σ define domain $\llbracket \sigma \rrbracket$:

$$
\begin{array}{ccc}
\llbracket \iota \rrbracket \triangleq \mathbb{N}_{\perp} & \llbracket \lambda \rrbracket \triangleq \Lambda_{\perp} & \llbracket \lambda^{\wedge} \rrbracket \triangleq\left(\Lambda^{*}\right)_{\perp} \\
\llbracket \sigma \rightarrow \tau \rrbracket \triangleq\{\varphi: \llbracket \sigma \rrbracket \rightarrow \llbracket \tau \rrbracket \mid \varphi \text { continuous }\} & \llbracket \sigma \times \tau \rrbracket \triangleq \llbracket \sigma \rrbracket \times \llbracket \tau \rrbracket
\end{array}
$$

where:

- E_{\perp} is $E \cup\{\perp\}$ with $\varphi \leq \psi$ iff $\varphi=\perp$ or $\varphi=\psi$
- $\llbracket \sigma \rightarrow \tau \rrbracket$ is ordered pointwise
- $\llbracket \sigma \times \tau \rrbracket$ is ordered componentwise

Domain semantics of system $\Lambda T_{b r}$

- For each type σ define domain $\llbracket \sigma \rrbracket$:

$$
\begin{array}{lll}
\llbracket \iota \rrbracket \triangleq \mathbb{N}_{\perp} & \llbracket \lambda \rrbracket \triangleq \Lambda_{\perp} & \llbracket \lambda^{\wedge} \rrbracket \triangleq\left(\Lambda^{*}\right)_{\perp} \\
\llbracket \sigma \rightarrow \tau \rrbracket \triangleq\{\varphi: \llbracket \sigma \rrbracket \rightarrow \llbracket \tau \rrbracket \mid \varphi \text { continuous }\} & \llbracket \sigma \times \tau \rrbracket \triangleq \llbracket \sigma \rrbracket \times \llbracket \tau \rrbracket
\end{array}
$$

where:

- E_{\perp} is $E \cup\{\perp\}$ with $\varphi \leq \psi$ iff $\varphi=\perp$ or $\varphi=\psi$
- $\llbracket \sigma \rightarrow \tau \rrbracket$ is ordered pointwise
- $\llbracket \sigma \times \tau \rrbracket$ is ordered componentwise
- For each term $\mathrm{M}: \sigma$ define $\llbracket \mathrm{M} \rrbracket \in \llbracket \sigma \rrbracket$

Domain semantics of system $\Lambda T_{b r}$

- For each type σ define domain $\llbracket \sigma \rrbracket$:

$$
\begin{array}{lll}
\llbracket \iota \rrbracket \triangleq \mathbb{N}_{\perp} & \llbracket \lambda \rrbracket \triangleq \Lambda_{\perp} & \llbracket \lambda^{\wedge} \rrbracket \triangleq\left(\Lambda^{*}\right)_{\perp} \\
\llbracket \sigma \rightarrow \tau \rrbracket \triangleq\{\varphi: \llbracket \sigma \rrbracket \rightarrow \llbracket \tau \rrbracket \mid \varphi \text { continuous }\} & \llbracket \sigma \times \tau \rrbracket \triangleq \llbracket \sigma \rrbracket \times \llbracket \tau \rrbracket
\end{array}
$$

where:

- E_{\perp} is $E \cup\{\perp\}$ with $\varphi \leq \psi$ iff $\varphi=\perp$ or $\varphi=\psi$
- $\llbracket \sigma \rightarrow \tau \rrbracket$ is ordered pointwise
- $\llbracket \sigma \times \tau \rrbracket$ is ordered componentwise
- For each term $\mathrm{M}: \sigma$ define $\llbracket \mathrm{M} \rrbracket \in \llbracket \sigma \rrbracket$

We have soundness:

$$
\mathrm{M} \rightsquigarrow \mathrm{~N} \Rightarrow \llbracket \mathrm{M} \rrbracket=\llbracket \mathrm{N} \rrbracket
$$

Domain semantics of system $\wedge T_{b r}$

- For each type σ define domain $\llbracket \sigma \rrbracket$:

$$
\begin{array}{ccc}
\llbracket \iota \rrbracket \triangleq \mathbb{N}_{\perp} & \llbracket \lambda \rrbracket \triangleq \Lambda_{\perp} & \llbracket \lambda^{\circ} \rrbracket \triangleq\left(\Lambda^{*}\right)_{\perp} \\
\llbracket \sigma \rightarrow \tau \rrbracket \triangleq\{\varphi: \llbracket \sigma \rrbracket \rightarrow \llbracket \tau \rrbracket \mid \varphi \text { continuous }\} & \llbracket \sigma \times \tau \rrbracket \triangleq \llbracket \sigma\}_{\perp} \\
\llbracket \sigma \rrbracket \times \llbracket \tau \rrbracket
\end{array}
$$

where:

- E_{\perp} is $E \cup\{\perp\}$ with $\varphi \leq \psi$ iff $\varphi=\perp$ or $\varphi=\psi$
- $\llbracket \sigma \rightarrow \tau \rrbracket$ is ordered pointwise
- $\llbracket \sigma \times \tau \rrbracket$ is ordered componentwise
- For each term $\mathrm{M}: \sigma$ define $\llbracket \mathrm{M} \rrbracket \in \llbracket \sigma \rrbracket$

We have soundness:

$$
\mathrm{M} \rightsquigarrow \mathrm{~N} \Rightarrow \llbracket \mathrm{M} \rrbracket=\llbracket \mathrm{N} \rrbracket
$$

and computational adequacy:

$$
\mathrm{M}: \iota \wedge \llbracket \mathrm{M} \rrbracket=\mathfrak{n} \Rightarrow \mathrm{M} \rightsquigarrow^{*} \mathrm{~s}^{n} \mathrm{z}
$$

and similarly on λ and λ^{\diamond}

A realizability model for our logic

Mapping logic to system $\wedge T_{b r}$

We map terms m, M, Π to programs $m^{*}: \iota, M^{*}: \lambda, \Pi^{*}: \lambda^{\diamond}$

- variables i, t, π are variables of system $\Lambda T_{b r}$ of type $\iota, \lambda, \lambda^{\diamond}$
- _* is such that FV $\left({ }_{-}^{*}\right)=\mathrm{FV}\left({ }_{-}\right)$

$$
\begin{gathered}
i^{*}=i \quad 0^{*}=z \quad(S m)^{*}=\mathrm{s} m^{*} \\
t^{*}=t \quad \underline{m}^{*}=\operatorname{var} m^{*} \quad(\lambda . M)^{*}=\operatorname{abs} M^{*} \\
(M \Pi)^{*}=\operatorname{app}^{\diamond} M^{*} \Pi^{*} \quad(M[m \mapsto \Pi])^{*}=M^{*}\left[m^{*} \mapsto \Pi^{*}\right] \\
\pi^{*}=\pi \quad\langle \rangle^{*}=\operatorname{nil} \quad\langle\Pi, M\rangle^{*}=\mathrm{cons} \Pi^{*} M^{*}
\end{gathered}
$$

- No X^{*}, b^{*} because no $(X),(b): X, \Phi$ are not computational

Mapping logic to system $\wedge T_{b r}$

We map terms m, M, Π to programs $m^{*}: \iota, M^{*}: \lambda, \Pi^{*}: \lambda^{\diamond}$

- variables i, t, π are variables of system $\Lambda T_{b r}$ of type $\iota, \lambda, \lambda^{\diamond}$
- _* is such that FV $\left({ }_{-}^{*}\right)=\mathrm{FV}\left({ }_{-}\right)$

$$
\begin{gathered}
i^{*}=i \quad 0^{*}=\mathrm{z} \quad(S m)^{*}=\mathrm{s} m^{*} \\
t^{*}=t \quad \underline{m}^{*}=\operatorname{var} m^{*} \quad(\lambda . M)^{*}=\operatorname{abs} M^{*} \\
(M \Pi)^{*}=\operatorname{app}^{\diamond} M^{*} \Pi^{*} \quad(M[m \mapsto \Pi])^{*}=M^{*}\left[m^{*} \mapsto \Pi^{*}\right] \\
\pi^{*}=\pi \quad\langle \rangle^{*}=\operatorname{nil} \quad\langle\Pi, M\rangle^{*}=\operatorname{cons} \Pi^{*} M^{*}
\end{gathered}
$$

- No X^{*}, b^{*} because no $(X),(b): X, \Phi$ are not computational We map formulas A to types A^{*} of system $\wedge T_{b r}$
- $\quad \Phi^{*}=\iota \quad\left(M \downarrow^{m}\right)^{*}=T \quad\left(\forall_{-} A\right)^{*}=A^{*}$

$$
\begin{gathered}
(m)^{*}=\iota \quad(M)^{*}=\lambda \quad(\Pi)^{*}=\lambda^{\diamond} \\
(A \Rightarrow B)^{*}=A^{*} \rightarrow B^{*} \quad(A \wedge B)^{*}=A^{*} \times B^{*}
\end{gathered}
$$

- $\left(M \downarrow^{m}\right)^{*}=T: M \downarrow^{m}$ is computationally irrelevant
- $\Phi^{*}=\iota$: we extract nat. numbers (bounds on reduction steps)
- \forall erased: quantifications are uniform by default

Formulas with parameters

- Closed formulas/terms with parameters: formulas/terms where free variables are replaced by real-world elements:
i are replaced with $\mathfrak{n} \in \mathbb{N} \quad t$ with $\mathfrak{M} \in \Lambda \quad \pi$ with $\Pi \in \Lambda^{*}$
X with $\mathfrak{X} \in \mathcal{P}(\Lambda) \quad b$ with $\mathfrak{b} \in\{\mathfrak{t} ; \mathfrak{f t}\}$

Formulas with parameters

- Closed formulas/terms with parameters: formulas/terms where free variables are replaced by real-world elements:
i are replaced with $\mathfrak{n} \in \mathbb{N} \quad t$ with $\mathfrak{M} \in \Lambda \quad \pi$ with $\Pi \in \Lambda^{*}$
X with $\mathfrak{X} \in \mathcal{P}(\Lambda) \quad b$ with $\mathfrak{b} \in\{\mathfrak{t} ; \mathfrak{f t}\}$
- Since $\mathbb{N} \subseteq \mathbb{N}_{\perp}, \Lambda \subseteq \Lambda_{\perp}$ and $\Lambda^{*} \subseteq\left(\Lambda^{*}\right)_{\perp}$:
if m, M, Π closed terms with parameters

$$
\text { then } \llbracket m^{*} \rrbracket \in \llbracket \iota \rrbracket, \llbracket M^{*} \rrbracket \in \llbracket \lambda \rrbracket, \llbracket \Pi^{*} \rrbracket \in \llbracket \lambda^{\triangleright} \rrbracket
$$

Formulas with parameters

- Closed formulas/terms with parameters: formulas/terms where free variables are replaced by real-world elements:
i are replaced with $\mathfrak{n} \in \mathbb{N} \quad t$ with $\mathfrak{M} \in \Lambda \quad \pi$ with $\Pi \in \Lambda^{*}$

$$
X \text { with } \mathfrak{X} \in \mathcal{P}(\Lambda) \quad b \text { with } \mathfrak{b} \in\{\mathfrak{t} ; \mathfrak{f}\}
$$

- Since $\mathbb{N} \subseteq \mathbb{N}_{\perp}, \Lambda \subseteq \Lambda_{\perp}$ and $\Lambda^{*} \subseteq\left(\Lambda^{*}\right)_{\perp}$:
if m, M, Π closed terms with parameters

$$
\text { then } \llbracket m^{*} \rrbracket \in \llbracket \iota \rrbracket, \llbracket M^{*} \rrbracket \in \llbracket \lambda \rrbracket, \llbracket \Pi^{*} \rrbracket \in \llbracket \lambda^{\curvearrowright} \rrbracket
$$

- Closed formula A with parameters gets a realizability value:

$$
|A| \subseteq \llbracket A^{*} \rrbracket
$$

Formulas with parameters

- Closed formulas/terms with parameters: formulas/terms where free variables are replaced by real-world elements:
i are replaced with $\mathfrak{n} \in \mathbb{N} \quad t$ with $\mathfrak{M} \in \Lambda \quad \pi$ with $\Pi \in \Lambda^{*}$

$$
X \text { with } \mathfrak{X} \in \mathcal{P}(\Lambda) \quad b \text { with } \mathfrak{b} \in\{\mathfrak{t} ; \mathfrak{f}\}
$$

- Since $\mathbb{N} \subseteq \mathbb{N}_{\perp}, \Lambda \subseteq \Lambda_{\perp}$ and $\Lambda^{*} \subseteq\left(\Lambda^{*}\right)_{\perp}$:
if m, M, Π closed terms with parameters

$$
\text { then } \llbracket m^{*} \rrbracket \in \llbracket \iota \rrbracket, \llbracket M^{*} \rrbracket \in \llbracket \lambda \rrbracket, \llbracket \Pi^{*} \rrbracket \in \llbracket \lambda^{\curvearrowright} \rrbracket
$$

- Closed formula A with parameters gets a realizability value:

$$
|A| \subseteq \llbracket A^{*} \rrbracket
$$

- The model is parameterized by a pole:

$$
\Perp \subseteq \mathbb{N}
$$

we extract natural numbers (bounds on reduction steps)

Realizability values: atomic predicates

$$
\begin{aligned}
& |\mathfrak{t}|=|t t|=\mathbb{N}_{\perp} \\
& |\mathfrak{f}|=|\boldsymbol{f f}|=\Perp
\end{aligned} \quad|M \in \mathfrak{X}|= \begin{cases}\mathbb{N}_{\perp} & \text { if } \llbracket M^{*} \rrbracket \in \mathfrak{X} \\
\Perp & \text { if } \llbracket M^{*} \rrbracket \notin \mathfrak{X}\end{cases}
$$

- these atomic predicates are computationally relevant \rightsquigarrow their realizability values depend on \Perp

Realizability values: atomic predicates

- these atomic predicates are computationally relevant \rightsquigarrow their realizability values depend on \Perp
- $\left|M \downarrow^{m}\right|= \begin{cases}\{*\}_{\perp} & \text { if } \llbracket M^{*} \rrbracket \text { normalizes in at most } \llbracket m^{*} \rrbracket \text { steps } \\ \emptyset & \text { otherwise }\end{cases}$
- these are computationally irrelevant
\rightsquigarrow their realizability values are independent from \Perp

Realizability values: atomic predicates

$$
\begin{aligned}
& |\mathfrak{t}|=|t t|=\mathbb{N}_{\perp} \\
& |\mathfrak{f}|=|\boldsymbol{f f}|=\Perp
\end{aligned} \quad|M \in \mathfrak{X}|= \begin{cases}\mathbb{N}_{\perp} & \text { if } \llbracket M^{*} \rrbracket \in \mathfrak{X} \\
\Perp & \text { if } \llbracket M^{*} \rrbracket \notin \mathfrak{X}\end{cases}
$$

- these atomic predicates are computationally relevant \rightsquigarrow their realizability values depend on \Perp
- $\left|M \downarrow^{m}\right|= \begin{cases}\{*\}_{\perp} & \text { if } \llbracket M^{*} \rrbracket \text { normalizes in at most } \llbracket m^{*} \rrbracket \text { steps } \\ \emptyset & \text { otherwise }\end{cases}$
- these are computationally irrelevant \rightsquigarrow their realizability values are independent from \Perp
- $|(m)|=\left\{\llbracket m^{*} \rrbracket\right\} \quad|(M)|=\left\{\llbracket M^{*} \rrbracket\right\} \quad|(\Pi)|=\left\{\llbracket \Pi^{*} \rrbracket\right\}$
- these are relativizations
\rightsquigarrow only one realizer: the value of the enclosed term

Realizability values: connectives

$$
\begin{aligned}
-|A \Rightarrow B| & =\left\{\varphi \in \llbracket A^{*} \rightarrow B^{*} \rrbracket|\forall \psi \in| A|, \varphi(\psi) \in| B \mid\right\} \\
|A \wedge B| & =\left\{(\varphi, \psi) \in \llbracket A^{*} \times B^{*} \rrbracket|\varphi \in| A|\wedge \psi \in| B \mid\right\}
\end{aligned}
$$

- standard definitions

Realizability values: connectives

- $|A \Rightarrow B|=\left\{\varphi \in \llbracket A^{*} \rightarrow B^{*} \rrbracket|\forall \psi \in| A|, \varphi(\psi) \in| B \mid\right\}$
$|A \wedge B|=\left\{(\varphi, \psi) \in \llbracket A^{*} \times B^{*} \rrbracket|\varphi \in| A|\wedge \psi \in| B \mid\right\}$
- standard definitions

$$
\begin{gathered}
|\forall i A|=\bigcap_{\mathfrak{n} \in \mathbb{N}}|A[\mathfrak{n} / i]| \quad|\forall t A|=\bigcap_{\mathfrak{M} \in \Lambda}|A[\mathfrak{M} / t]| \\
|\forall \pi A|=\bigcap_{\boldsymbol{\Pi} \in \Lambda^{*}}|A[\boldsymbol{\Pi} / \pi]| \\
|\forall X A|=\bigcap_{\mathfrak{X} \in \mathcal{P}(\Lambda)}|A[\mathfrak{X} / X]| \quad|\forall b A|=\bigcap_{\mathfrak{b} \in\{\mathbb{\mathfrak { H } ; \mathfrak { 廾 } \}}}|A[\mathfrak{b} / b]|
\end{gathered}
$$

- quantified formulas are instantiated with real-world elements

A restricted double-negation elimination

double-negation elimination on A is $\neg \neg A \Rightarrow A$

A restricted double-negation elimination

double-negation elimination on A is $\neg \neg A \Rightarrow A$

- unrealizable for computationally irrelevant formula $M \downarrow^{m}$:
- if $\Perp \neq \emptyset$
- and if $\llbracket M^{*} \rrbracket$ doesn't normalize after $\llbracket m^{*} \rrbracket$ steps
- then $\left|\neg \neg M \downarrow^{m}\right| \neq \emptyset$ and $\left|M \downarrow^{m}\right|=\emptyset$, so $\left|\neg \neg M \downarrow^{m} \Rightarrow M \downarrow^{m}\right|=\emptyset$

A restricted double-negation elimination

double-negation elimination on A is $\neg \neg A \Rightarrow A$

- unrealizable for computationally irrelevant formula $M \downarrow^{m}$:
- if $\Perp \neq \emptyset$
- and if $\llbracket M^{*} \rrbracket$ doesn't normalize after $\llbracket m^{*} \rrbracket$ steps
- then $\left|\neg \neg M \downarrow^{m}\right| \neq \emptyset$ and $\left|M \downarrow^{m}\right|=\emptyset$, so $\left|\neg \neg M \downarrow^{m} \Rightarrow M \downarrow^{m}\right|=\emptyset$
- but realizable for negative formulas:

$$
A^{-}, B^{-}::=\Phi\left|A \Rightarrow B^{-}\right| A^{-} \wedge B^{-} \mid \forall_{-} A^{-}
$$

A restricted double-negation elimination

double-negation elimination on A is $\neg \neg A \Rightarrow A$

- unrealizable for computationally irrelevant formula $M \downarrow^{m}$:
- if $\Perp \neq \emptyset$
- and if $\llbracket M^{*} \rrbracket$ doesn't normalize after $\llbracket m^{*} \rrbracket$ steps
- then $\left|\neg \neg M \downarrow^{m}\right| \neq \emptyset$ and $\left|M \downarrow^{m}\right|=\emptyset$, so $\left|\neg \neg M \downarrow^{m} \Rightarrow M \downarrow^{m}\right|=\emptyset$
- but realizable for negative formulas:

$$
A^{-}, B^{-}::=\Phi\left|A \Rightarrow B^{-}\right| A^{-} \wedge B^{-} \mid \forall_{-} A^{-}
$$

- $\llbracket \mathrm{dne}_{A^{-}} \rrbracket \in\left|\neg \neg A^{-} \Rightarrow A^{-}\right|$where:

$$
\begin{gathered}
\operatorname{dne}_{\Phi}=\lambda x \cdot x(\lambda y \cdot y) \quad \text { dne }_{\forall \epsilon A^{-}}=\text {dne }_{A^{-}} \\
\operatorname{dne}_{A \Rightarrow B^{-}}=\lambda x y \cdot \operatorname{dne}_{B^{-}}(\lambda z \cdot x(\lambda u \cdot z(u y))) \\
\operatorname{dne}_{A^{-} \wedge B^{-}}=\lambda x \cdot\left\langle\operatorname{dne}_{A^{-}}\left(\lambda y \cdot x\left(\lambda z \cdot y\left(\mathrm{p}_{1} z\right)\right)\right), \operatorname{dne}_{B^{-}}\left(\lambda y \cdot x\left(\lambda z \cdot y\left(\mathrm{p}_{2} z\right)\right)\right)\right\rangle
\end{gathered}
$$

A restricted double-negation elimination

double-negation elimination on A is $\neg \neg A \Rightarrow A$

- unrealizable for computationally irrelevant formula $M \downarrow^{m}$:
- if $\Perp \neq \emptyset$
- and if $\llbracket M^{*} \rrbracket$ doesn't normalize after $\llbracket m^{*} \rrbracket$ steps
- then $\left|\neg \neg M \downarrow^{m}\right| \neq \emptyset$ and $\left|M \downarrow^{m}\right|=\emptyset$, so $\left|\neg \neg M \downarrow^{m} \Rightarrow M \downarrow^{m}\right|=\emptyset$
- but realizable for negative formulas:

$$
A^{-}, B^{-}::=\Phi\left|A \Rightarrow B^{-}\right| A^{-} \wedge B^{-} \mid \forall_{-} A^{-}
$$

- $\llbracket \mathrm{dne}_{A^{-}} \rrbracket \in\left|\neg \neg A^{-} \Rightarrow A^{-}\right|$where:

$$
\begin{aligned}
& \operatorname{dne}_{\Phi}=\lambda x \cdot x(\lambda y \cdot y) \quad \text { dne }_{\forall \epsilon A^{-}}=\operatorname{dne}_{A^{-}} \\
& \operatorname{dne}_{A \Rightarrow B^{-}}=\lambda x y \cdot \text { dne }_{B^{-}}(\lambda z \cdot x(\lambda u \cdot z(u y)))
\end{aligned}
$$

$$
\mathrm{dne}_{A^{-} \wedge B^{-}}=\lambda x \cdot\left\langle\mathrm{dne}_{A^{-}}\left(\lambda y \cdot x\left(\lambda z \cdot y\left(\mathrm{p}_{1} z\right)\right)\right), \mathrm{dne}_{B^{-}}\left(\lambda y \cdot x\left(\lambda z \cdot y\left(\mathrm{p}_{2} z\right)\right)\right)\right\rangle
$$

- $\llbracket \mathrm{dne}_{\Phi} \rrbracket \in|\neg \neg \Phi \Rightarrow \Phi|$ by disjunction of cases

Interpreting second-order elimination

- In Krivine's realizability, $\lambda x . x \Vdash \forall X A(X) \Rightarrow A(B)$
- proof terms are polymorphic

Interpreting second-order elimination

- In Krivine's realizability, $\lambda x . x \Vdash \forall X A(X) \Rightarrow A(B)$
- proof terms are polymorphic
- here, proof terms (and realizers) are simply-typed

Interpreting second-order elimination

- In Krivine's realizability, $\lambda x . x \Vdash \forall X A(X) \Rightarrow A(B)$
- proof terms are polymorphic
- here, proof terms (and realizers) are simply-typed
- $\forall X A(X) \Rightarrow A(B)$ interpreted in two steps:

Interpreting second-order elimination

- In Krivine's realizability, $\lambda x . x \Vdash \forall X A(X) \Rightarrow A(B)$
- proof terms are polymorphic
- here, proof terms (and realizers) are simply-typed
- $\forall X A(X) \Rightarrow A(B)$ interpreted in two steps:
- comprehension: $\exists X \forall^{r} t\left(t \in X \Leftrightarrow B^{-}(t)\right)$
- B^{-}negative
- relativized quantification on t
- using bar recursion

Interpreting second-order elimination

- In Krivine's realizability, $\lambda x . x \Vdash \forall X A(X) \Rightarrow A(B)$
- proof terms are polymorphic
- here, proof terms (and realizers) are simply-typed
- $\forall X A(X) \Rightarrow A(B)$ interpreted in two steps:
- comprehension: $\exists X \forall^{r} t\left(t \in X \Leftrightarrow B^{-}(t)\right)$
- B^{-}negative
- relativized quantification on t
- using bar recursion
- $\forall^{r} t(B(t) \Leftrightarrow C(t)) \Rightarrow\left(A^{r}(B) \Leftrightarrow A^{r}(C)\right)$
- A^{r} relativized:

$$
\begin{aligned}
A^{r}, B^{r}::=P \mid & A^{r} \Rightarrow B^{r} \mid A^{r} \wedge B^{r} \\
& \quad\left|\forall^{r} i A^{r}\right| \forall^{r} t A^{r}\left|\forall^{r} \pi A^{r}\right| \forall X A^{r}\left|\forall b A^{r}\right|
\end{aligned}
$$

- realizer defined by induction on A

Interpreting second-order elimination

- In Krivine's realizability, $\lambda x . x \Vdash \forall X A(X) \Rightarrow A(B)$
- proof terms are polymorphic
- here, proof terms (and realizers) are simply-typed
- $\forall X A(X) \Rightarrow A(B)$ interpreted in two steps:
- comprehension: $\exists X \forall^{r} t\left(t \in X \Leftrightarrow B^{-}(t)\right)$
- B^{-}negative
- relativized quantification on t
- using bar recursion
- $\forall^{r} t(B(t) \Leftrightarrow C(t)) \Rightarrow\left(A^{r}(B) \Leftrightarrow A^{r}(C)\right)$
- A^{r} relativized:

$$
\begin{aligned}
A^{r}, B^{r}::=P \mid & A^{r} \Rightarrow B^{r} \mid A^{r} \wedge B^{r} \\
& \left|\forall^{r} i A^{r}\right| \forall^{r} t A^{r}\left|\forall^{r} \pi A^{r}\right| \forall X A^{r}\left|\forall b A^{r}\right|
\end{aligned}
$$

- realizer defined by induction on A
- finally, we will get $\forall X A^{r}(\bar{X}) \Rightarrow A^{r}\left(B^{-}\right)^{-}$

Comprehension: $\exists X \forall^{r} t\left(t \in X \Leftrightarrow B^{-}(t)\right)$

Two steps:

Comprehension: $\exists X \forall^{r} t\left(t \in X \Leftrightarrow B^{-}(t)\right)$

Two steps:

- 【 $\lambda x y \cdot \operatorname{brec}\left(\lambda z \cdot \operatorname{exf}_{A^{-}}(x z)\right) y\} \rrbracket$

$$
\in\left|\forall t \exists b A^{-}(b, t) \Rightarrow \exists X \forall^{r} t A^{-}(t \in X, t)\right|
$$

- quite technical, uses Zorn's lemma

Comprehension: $\exists X \forall^{r} t\left(t \in X \Leftrightarrow B^{-}(t)\right)$

Two steps:

- $\llbracket \lambda x y \cdot \operatorname{brec}\left(\lambda z \cdot \operatorname{exf}_{A^{-}}(x z)\right) y\} \rrbracket$

$$
\in\left|\forall t \exists b A^{-}(b, t) \Rightarrow \exists X \forall^{r} t A^{-}(t \in X, t)\right|
$$

- quite technical, uses Zorn's lemma
$-\llbracket \lambda x . x\left\langle\mathrm{exf}_{A^{-}}, \lambda y . x\left\langle\lambda_{-} . y, \lambda_{-} . z\right\rangle\right\rangle \rrbracket \in\left|\forall t \exists b\left(b \Leftrightarrow A^{-}(t)\right)\right|$
- quite straightforward:

Comprehension: $\exists X \forall^{r} t\left(t \in X \Leftrightarrow B^{-}(t)\right)$

Two steps:

- $\llbracket \lambda x y \cdot \operatorname{brec}\left(\lambda z \cdot \operatorname{exf}_{A^{-}}(x z)\right) y\} \rrbracket$

$$
\in\left|\forall t \exists b A^{-}(b, t) \Rightarrow \exists X \forall^{r} t A^{-}(t \in X, t)\right|
$$

- quite technical, uses Zorn's lemma
- $\llbracket \lambda x . x\left\langle\mathrm{exf}_{A^{-}}, \lambda y . x\left\langle\lambda_{-} . y, \lambda_{-} . z\right\rangle\right\rangle \rrbracket \in\left|\forall t \exists b\left(b \Leftrightarrow A^{-}(t)\right)\right|$
- quite straightforward:

Let $\mathfrak{M} \in \Lambda$ and $\varphi \in\left|\forall b \neg\left(b \Leftrightarrow A^{-}(\mathfrak{M})\right)\right|$. We prove:

$$
\llbracket \varphi\left\langle\operatorname{exf}_{A^{-}}, \lambda y . \varphi\left\langle\lambda_{-} . y, \lambda_{-.} z\right\rangle\right\rangle \rrbracket \in|f f|
$$

Comprehension: $\exists X \forall^{r} t\left(t \in X \Leftrightarrow B^{-}(t)\right)$

Two steps:

- $\llbracket \lambda x y \cdot \operatorname{brec}\left(\lambda z \cdot \operatorname{exf}_{A^{-}}(x z)\right) y\} \rrbracket$

$$
\in\left|\forall t \exists b A^{-}(b, t) \Rightarrow \exists X \forall^{r} t A^{-}(t \in X, t)\right|
$$

- quite technical, uses Zorn's lemma
- $\llbracket \lambda x . x\left\langle\mathrm{exf}_{A^{-}}, \lambda y . x\left\langle\lambda_{-} . y, \lambda_{-} . z\right\rangle\right\rangle \rrbracket \in\left|\forall t \exists b\left(b \Leftrightarrow A^{-}(t)\right)\right|$
- quite straightforward:

Let $\mathfrak{M} \in \Lambda$ and $\varphi \in\left|\forall b \neg\left(b \Leftrightarrow A^{-}(\mathfrak{M})\right)\right|$. We prove:

$$
\llbracket \varphi\left\langle\operatorname{exf}_{A^{-}}, \lambda y . \varphi\left\langle\lambda_{-} . y, \lambda_{-.} z\right\rangle\right\rangle \rrbracket \in|f f|
$$

$\varphi \in\left|\neg\left(f f \Leftrightarrow A^{-}(\mathfrak{M})\right)\right|$ so we need to prove:
$\llbracket \operatorname{exf}_{A^{-}} \rrbracket \in\left|f \Rightarrow \Rightarrow A^{-}(\mathfrak{M})\right|$ and $\left.\llbracket \lambda y . \varphi\left\langle\lambda_{-.} y, \lambda_{-.}\right\rangle\right\rangle \rrbracket\left|A^{-}(\mathfrak{M}) \Rightarrow f f\right|$

Comprehension: $\exists X \forall^{r} t\left(t \in X \Leftrightarrow B^{-}(t)\right)$

Two steps:

- $\llbracket \lambda x y \cdot \operatorname{brec}\left(\lambda z \cdot \operatorname{exf}_{A^{-}}(x z)\right) y\} \rrbracket$

$$
\in\left|\forall t \exists b A^{-}(b, t) \Rightarrow \exists X \forall^{r} t A^{-}(t \in X, t)\right|
$$

- quite technical, uses Zorn's lemma
$-\llbracket \lambda x . x\left\langle\mathrm{exf}_{A^{-}}, \lambda y . x\left\langle\lambda_{-} . y, \lambda_{-} . z\right\rangle\right\rangle \rrbracket \in\left|\forall t \exists b\left(b \Leftrightarrow A^{-}(t)\right)\right|$
- quite straightforward:

Let $\mathfrak{M} \in \Lambda$ and $\varphi \in\left|\forall b \neg\left(b \Leftrightarrow A^{-}(\mathfrak{M})\right)\right|$. We prove:

$$
\llbracket \varphi\left\langle\operatorname{exf}_{A^{-}}, \lambda y . \varphi\left\langle\lambda_{-} . y, \lambda_{-.} z\right\rangle\right\rangle \rrbracket \in|f f|
$$

$\varphi \in\left|\neg\left(f f \Leftrightarrow A^{-}(\mathfrak{M})\right)\right|$ so we need to prove:
$\llbracket \operatorname{exf}_{A^{-}} \rrbracket \in\left|f \Rightarrow \Rightarrow A^{-}(\mathfrak{M})\right|$ and $\left.\llbracket \lambda y . \varphi\left\langle\lambda_{-.} y, \lambda_{-.}\right\rangle\right\rangle \rrbracket\left|A^{-}(\mathfrak{M}) \Rightarrow f f\right|$
Let $\psi \in\left|A^{-}(\mathfrak{M})\right|, \varphi \in\left|\neg\left(t t \Leftrightarrow A^{-}(\mathfrak{M})\right)\right|$ so we prove:

$$
\llbracket \lambda_{_} . \psi \rrbracket \in\left|t t \Rightarrow A^{-}(\mathfrak{M})\right| \text { and } \llbracket \lambda_{.} . z \rrbracket \in\left|A^{-}(\mathfrak{M}) \Rightarrow t t\right|
$$

A weak form of bar recursion

- Our bar recursion:

$$
\begin{gathered}
\text { brec: }((\sigma \rightarrow \iota) \rightarrow \sigma) \rightarrow((\lambda \rightarrow \sigma) \rightarrow \iota) \rightarrow \sigma^{\dagger} \rightarrow \iota \\
\text { brec MN P } \rightsquigarrow \mathrm{N}(\mathrm{P} \mid \lambda x \cdot \mathrm{M}(\lambda y . \operatorname{brec} \mathrm{MN}(\mathrm{P} \cup\{x \mapsto y\}))) \\
\text { realizes } \forall t \exists b A^{-}(b, t) \Rightarrow \exists X \forall^{r} t A^{-}(t \in X, t)
\end{gathered}
$$

A weak form of bar recursion

- Our bar recursion:

$$
\begin{gathered}
\text { brec: }((\sigma \rightarrow \iota) \rightarrow \sigma) \rightarrow((\lambda \rightarrow \sigma) \rightarrow \iota) \rightarrow \sigma^{\dagger} \rightarrow \iota \\
\text { brec MN P } \rightsquigarrow \mathrm{N}(\mathrm{P} \mid \lambda x \cdot \mathrm{M}(\lambda y . \operatorname{brec} \mathrm{MN}(\mathrm{P} \cup\{x \mapsto y\}))) \\
\text { realizes } \forall t \exists b A^{-}(b, t) \Rightarrow \exists X \forall^{r} t A^{-}(t \in X, t)
\end{gathered}
$$

- Usual bar recursion:

$$
\begin{gathered}
\text { brec }^{\prime}:(\lambda \rightarrow(\sigma \rightarrow \iota) \rightarrow \sigma) \rightarrow((\lambda \rightarrow \sigma) \rightarrow \iota) \rightarrow \sigma^{\dagger} \rightarrow \iota \\
\text { brec }^{\prime} \mathrm{MNP} \rightsquigarrow \mathrm{~N}\left(\mathrm{P} \mid \lambda x . \mathrm{M} x\left(\lambda y . \mathrm{brec}^{\prime} \mathrm{MN}(\mathrm{P} \cup\{x \mapsto y\})\right)\right) \\
\text { realizes } \forall^{r} t \exists b A^{-}(b, t) \Rightarrow \exists X \forall^{r} t A^{-}(t \in X, t) \\
\text { stronger }
\end{gathered}
$$

A weak form of bar recursion

- Our bar recursion:

$$
\begin{gathered}
\text { brec: }((\sigma \rightarrow \iota) \rightarrow \sigma) \rightarrow((\lambda \rightarrow \sigma) \rightarrow \iota) \rightarrow \sigma^{\dagger} \rightarrow \iota \\
\text { brec MN P } \rightsquigarrow \mathrm{N}(\mathrm{P} \mid \lambda x \cdot \mathrm{M}(\lambda y . \operatorname{brec} \mathrm{MN}(\mathrm{P} \cup\{x \mapsto y\}))) \\
\text { realizes } \forall t \exists b A^{-}(b, t) \Rightarrow \exists X \forall^{r} t A^{-}(t \in X, t)
\end{gathered}
$$

- Usual bar recursion:

$$
\begin{gathered}
\text { brec }^{\prime}:(\lambda \rightarrow(\sigma \rightarrow \iota) \rightarrow \sigma) \rightarrow((\lambda \rightarrow \sigma) \rightarrow \iota) \rightarrow \sigma^{\dagger} \rightarrow \iota \\
\text { brec }^{\prime} \mathrm{MNP} \rightsquigarrow \mathrm{~N}\left(\mathrm{P} \mid \lambda x . \mathrm{M} x\left(\lambda y . \mathrm{brec}^{\prime} \mathrm{MN}(\mathrm{P} \cup\{x \mapsto y\})\right)\right) \\
\text { realizes } \forall^{r} t \exists b A^{-}(b, t) \Rightarrow \exists X \forall^{r} t A^{-}(t \in X, t) \\
\text { stronger }
\end{gathered}
$$

Countable choice stronger than comprehension?

$\forall^{r} t(B(t) \Leftrightarrow C(t)) \Rightarrow\left(A^{r}(B) \Leftrightarrow A^{r}(C)\right)$

If $\overrightarrow{\mathfrak{n}} \in \overrightarrow{\mathbb{N}}, \overrightarrow{\mathfrak{M}} \in \vec{\Lambda}, \overrightarrow{\boldsymbol{n}} \in \overrightarrow{\Lambda^{*}}$ then:

$$
\begin{aligned}
& {\left[\left[\operatorname{repl}_{A^{r}}[\overrightarrow{\mathrm{n}} / \vec{i}, \overrightarrow{\mathfrak{M}} / \vec{t}, \overrightarrow{\boldsymbol{n}} / \vec{\pi}]\right]\right] } \\
& \in\left|\left(\forall^{r} t(B(t) \Leftrightarrow C(t)) \Rightarrow\left(A^{r}(B) \Leftrightarrow A^{r}(C)\right)\right)[\overrightarrow{\mathrm{n}} / \vec{i}, \overrightarrow{\mathfrak{M}} / \vec{t}, \overrightarrow{\boldsymbol{\Pi}} / \vec{\pi}]\right|
\end{aligned}
$$

$\forall^{r} t(B(t) \Leftrightarrow C(t)) \Rightarrow\left(A^{r}(B) \Leftrightarrow A^{r}(C)\right)$

If $\overrightarrow{\mathfrak{n}} \in \overrightarrow{\mathbb{N}}, \overrightarrow{\mathfrak{M}} \in \vec{\Lambda}, \overrightarrow{\boldsymbol{n}} \in \overrightarrow{\Lambda^{*}}$ then:

$$
\begin{aligned}
& {\left[\left[\operatorname{repl}_{A^{r}}[\overrightarrow{\mathfrak{n}} / \vec{i}, \overrightarrow{\mathfrak{M}} / \vec{t}, \overrightarrow{\boldsymbol{n}} / \vec{\pi}]\right]\right] } \\
\in & \left|\left(\forall^{r} t(B(t) \Leftrightarrow C(t)) \Rightarrow\left(A^{r}(B) \Leftrightarrow A^{r}(C)\right)\right)[\overrightarrow{\mathfrak{n}} / \vec{i}, \overrightarrow{\mathfrak{M}} / \vec{t}, \overrightarrow{\boldsymbol{n}} / \vec{\pi}]\right|
\end{aligned}
$$

where repl $A_{A^{r}} \triangleq \lambda x$.repl ${ }_{A^{r}}$ and:

$$
\begin{gathered}
\operatorname{repl} \overline{\bar{X}} \mapsto M \in X_{\prime}=x M^{*} \quad \operatorname{repl} \overline{\bar{X}} \mapsto P_{\prime}=\langle\lambda y \cdot y, \lambda y \cdot y\rangle \text { if } P \neq M \in X \\
\operatorname{repl}_{A_{1}^{r} \rightarrow A_{2}^{r}}^{\prime}=\left\langle\lambda y z \cdot \mathrm{p}_{1} \operatorname{repl}_{A_{2}^{r}}^{\prime}\left(y\left(\mathrm{p}_{2} \operatorname{repl}_{A_{1}^{r}}^{\prime} z\right)\right), \lambda y z \cdot \mathrm{p}_{2} \operatorname{repl}_{A_{2}^{r}}^{\prime}\left(y\left(\mathrm{p}_{1} \operatorname{repl}_{A_{1}^{r}}^{\prime} z\right)\right)\right\rangle \\
\operatorname{repl}_{A_{1}^{r} \wedge A_{2}^{r}}^{\prime}=\left\langle\lambda y \cdot\left\langle\mathrm{p}_{1} \operatorname{repl}_{A_{1}^{r}}^{\prime}\left(\mathrm{p}_{1} y\right), \mathrm{p}_{1} \operatorname{repl}_{A_{2}^{r}}^{\prime}\left(\mathrm{p}_{2} y\right)\right\rangle, \lambda y \cdot\left\langle\mathrm{p}_{2} \operatorname{repl}_{A_{1}^{r}}^{\prime}\left(\mathrm{p}_{1} y\right), \mathrm{p}_{2} \operatorname{repl}_{A_{2}^{r}}^{\prime}\left(\mathrm{p}_{2} y\right)\right\rangle\right\rangle \\
\operatorname{repl}_{\forall r \eta A^{r}}^{\prime}=\left\langle\lambda \eta \cdot \mathrm{p}_{1} \operatorname{repl}_{A^{r}}^{\prime}(y \eta), \lambda y \eta \cdot \mathrm{p}_{2} \operatorname{repl}_{A^{r}}^{\prime}(y \eta)\right\rangle \quad \operatorname{repl}_{\forall X A^{r}}^{\prime}=\operatorname{repl}_{\forall b A^{r}}^{\prime}=\operatorname{repl}_{A^{r}}^{\prime}
\end{gathered}
$$

Second-order elimination

$$
\begin{gathered}
\operatorname{elim}_{A^{r}, B^{-}} \triangleq \\
\lambda x \cdot \operatorname{dne}_{A^{r}\left(B^{-}\right)^{-}}\left(\begin{array}{c}
\lambda y \cdot \operatorname{brec}\left(\lambda z \cdot \operatorname{exf}_{B^{-}}\left(z\left\langle\operatorname{exf}_{B^{-}}, \lambda u \cdot z\left\langle\lambda _. u, \lambda_{-} . z\right\rangle\right\rangle\right)\right) \\
\left(\lambda z \cdot y\left(\mathrm{p}_{1}\left(\operatorname{repl}_{A^{r}} z\right) x\right)\right) \\
\{ \}
\end{array}\right)
\end{gathered}
$$

Second-order elimination

$$
\begin{gathered}
\operatorname{elim}_{A^{r}, B^{-}} \triangleq \\
\lambda x . \operatorname{dne}_{A^{r}\left(B^{-}\right)^{-}}\left(\begin{array}{c}
\lambda y \cdot \operatorname{brec}\left(\lambda z . \operatorname{exf}_{B^{-}}\left(z\left\langle\operatorname{exf}_{B^{-}}, \lambda u . z\left\langle\lambda_{-} u, \lambda-. z\right\rangle\right\rangle\right)\right) \\
\left(\lambda z \cdot y\left(\mathrm{p}_{1}\left(\operatorname{repl}_{A^{r}} z\right) x\right)\right) \\
\{ \}
\end{array}\right) \\
\operatorname{elim}_{A^{r}, B^{-}} \in\left|\forall X A^{r}(\bar{X}) \Rightarrow A^{r}\left(B^{-}\right)^{-}\right|
\end{gathered}
$$

Second-order elimination

$\operatorname{elim}_{A^{r}, B^{-}} \triangleq$
$\lambda x . \operatorname{dne}_{A^{r}\left(B^{-}\right)^{-}}\left(\begin{array}{c}\lambda y . \operatorname{brec}\left(\lambda z . \operatorname{exf}_{B^{-}}\left(z\left\langle\operatorname{exf}_{B^{-}}, \lambda u . z\left\langle\lambda_{-} . u, \lambda_{-} . z\right\rangle\right\rangle\right)\right) \\ \left(\lambda z . y\left(\mathrm{p}_{1}\left(\operatorname{repl}_{A^{r}} z\right) x\right)\right) \\ \{ \}\end{array}\right)$

$$
\operatorname{elim}_{A^{r}, B^{-}} \in\left|\forall X A^{r}(\bar{X}) \Rightarrow A^{r}\left(B^{-}\right)^{-}\right|
$$

Believe me!

The realizability interpretation of normalization of $M: T$

Normalization of system F: reminder
Three steps:

Normalization of system F: reminder
Three steps:

- RedC and (\Downarrow) where $\Downarrow(t) \triangleq t \downarrow$

Normalization of system F: reminder

Three steps:

- RedC and (\Downarrow) where $\Downarrow(t) \triangleq t \downarrow$
- If T type of F with $\mathrm{FV}(T)=\left\{X_{0}, \ldots, X_{n-1}\right\}$ then:

$$
\begin{aligned}
& \forall X_{0}\left(\operatorname { R e d C } \text { and } (\overline { X _ { 0 } }) \Rightarrow \ldots \Rightarrow \forall X _ { n - 1 } \left(\operatorname{RedC} \text { and }\left(\overline{X_{n-1}}\right)\right.\right. \\
&\left.\left.\Rightarrow \operatorname{RedC} \text { and }\left(R C_{T}\right)\right) \ldots\right)
\end{aligned}
$$

Normalization of system F: reminder

Three steps:

- RedC and (\Downarrow) where $\Downarrow(t) \triangleq t \downarrow$
- If T type of F with $\mathrm{FV}(T)=\left\{X_{0}, \ldots, X_{n-1}\right\}$ then:

$$
\begin{aligned}
& \forall X_{0}\left(\operatorname { R e d C } \text { and } (\overline { X _ { 0 } }) \Rightarrow \ldots \Rightarrow \forall X _ { n - 1 } \left(\operatorname{RedC} \text { and }\left(\overline{X_{n-1}}\right)\right.\right. \\
&\left.\left.\Rightarrow \operatorname{RedC} \text { and }\left(R C_{T}\right)\right) \ldots\right)
\end{aligned}
$$

- If $\operatorname{FV}\left(T_{0}, \ldots, T_{m-1}, U\right) \subseteq\left\{X_{0}, \ldots, X_{n-1}\right\}$ and $T_{m-1}, \ldots, T_{0} \vdash M: U$ typing derivation in F then:

$$
\begin{aligned}
& \forall X_{0}\left(\mathcal { R e d C } \text { and } (\overline { X _ { 0 } }) \Rightarrow \ldots \Rightarrow \forall X _ { n - 1 } \left(\operatorname{RedC} \text { and }\left(\overline{X_{n-1}}\right)\right.\right. \\
& \Rightarrow \forall^{r} t_{m-1}\left(R C _ { T _ { m - 1 } } (t _ { m - 1 }) \Rightarrow \ldots \Rightarrow \forall ^ { r } t _ { 0 } \left(R C_{T_{0}}\left(t_{0}\right)\right.\right. \\
& \left.\left.\left.\left.\quad \Rightarrow R C_{U}\left(M\left[0 \mapsto\left\langle t_{0}, \ldots, t_{m-1}\right\rangle\right]\right)\right) \ldots\right)\right) \ldots\right)
\end{aligned}
$$

RedC and (\Downarrow)

$$
\begin{aligned}
\text { normrc }= & \langle\langle\lambda \pi x \cdot x \mathrm{z} *, \lambda t x \cdot x\rangle, \lambda t u \pi x y \cdot x(\lambda i . y(\mathrm{~s} i))\rangle \\
& \llbracket \text { normrc } \rrbracket \in|\mathcal{R e d C a n d}(\Downarrow)|
\end{aligned}
$$

RedC and $\left(R C_{T}\right)$

For T type of system F built from variables X of the logic we define:

$$
\operatorname{isrc}_{T}=\left\langle\left\langle\operatorname{isrc}_{T}^{(1)}, \operatorname{isrc}_{T}^{(2)}\right\rangle, \operatorname{isrc}_{T}^{(3)}\right\rangle
$$

such that $\operatorname{FV}\left(\operatorname{isrc}_{T}\right)=\left\{x_{X} \mid X \in \mathrm{FV}(T)\right\}$

RedC and $\left(R C_{T}\right)$

For T type of system F built from variables X of the logic we define:

$$
\operatorname{isrc}_{T}=\left\langle\left\langle\operatorname{isrc}_{T}^{(1)}, \operatorname{isrc}_{T}^{(2)}\right\rangle, \operatorname{isrc}_{T}^{(3)}\right\rangle
$$

such that $\mathrm{FV}\left(\operatorname{isrc}_{T}\right)=\left\{x_{X} \mid X \in \mathrm{FV}(T)\right\}$

$$
\begin{aligned}
& \operatorname{isrc}_{X}^{(1)}=\mathrm{p}_{1}\left(\mathrm{p}_{1} x_{X}\right) \quad \quad \operatorname{isrc}_{X}^{(2)}=\mathrm{p}_{2}\left(\mathrm{p}_{1} x_{X}\right) \quad \quad \operatorname{isrc}{\underset{X}{(3)}}_{(3)} \mathrm{p}_{3} x_{X} \quad \operatorname{isrc}_{T \rightarrow U}^{(1)}=\lambda \pi t x . \operatorname{isrc}{ }_{U}^{(1)}(\operatorname{cons} \pi t) \\
& i \operatorname{src}_{T \rightarrow U}^{(2)}=\lambda t x \cdot i \operatorname{src}_{U}^{(2)}(\operatorname{app} t(\operatorname{var} z))\left(x(\operatorname{varz})\left(i \operatorname{src}_{T}^{(1)} \operatorname{nil}\right)\right) \quad i \operatorname{src}_{T \rightarrow U}^{(3)}=\lambda t u \pi x v y \cdot i \operatorname{src} C_{U}^{(3)} t u(\operatorname{cons} \pi v)(x v y) \\
& \operatorname{isrc}_{\forall X}{ }^{(1)}=\lambda \pi x_{X} \cdot \operatorname{isrc}{ }_{T}^{(1)} \pi \quad \operatorname{isrc}_{\forall X T}^{(3)}=\lambda t u \pi y x_{X} \cdot \operatorname{isrc}_{T}^{(3)}\left(y x_{X}\right)
\end{aligned}
$$

RedC and $\left(R C_{T}\right)$

For T type of system F built from variables X of the logic we define:

$$
\operatorname{isrc}_{T}=\left\langle\left\langle\operatorname{isrc}_{T}^{(1)}, \operatorname{isrc}_{T}^{(2)}\right\rangle, \operatorname{isrc}_{T}^{(3)}\right\rangle
$$

such that $\operatorname{FV}\left(\operatorname{isrc}_{T}\right)=\left\{x_{X} \mid X \in \mathrm{FV}(T)\right\}$

$$
\begin{aligned}
& \operatorname{isrc}_{X}^{(1)}=\mathrm{p}_{1}\left(\mathrm{p}_{1} x_{X}\right) \quad \quad \operatorname{isrc}{ }_{X}^{(2)}=\mathrm{p}_{2}\left(\mathrm{p}_{1} x_{X}\right) \quad \operatorname{isrc}_{X}^{(3)}=\mathrm{p}_{3} x_{X} \quad \operatorname{isrc}{ }_{T \rightarrow U}^{(1)}=\lambda \pi t x . \operatorname{isrc}_{U}^{(1)}(\operatorname{cons} \pi t) \\
& \operatorname{isrc}_{T \rightarrow U}^{(2)}=\lambda t x . \operatorname{isrc}{ }_{U}^{(2)}(\operatorname{app} t(\operatorname{varz}))\left(x(\operatorname{varz})\left(\operatorname{isrc}_{T}^{(1)} \operatorname{nil}\right)\right) \quad \operatorname{isrc}_{T \rightarrow U}^{(3)}=\lambda t u \pi x v y . \operatorname{isrc}{ }_{U}^{(3)} t u(\operatorname{cons} \pi v)(x v y) \\
& \operatorname{isrc}_{\forall X T}^{(1)}=\lambda \pi x_{X} \cdot \operatorname{isrc} T_{T}^{(1)} \pi \quad \operatorname{isrc}_{\forall X T}^{(3)}=\lambda t u \pi y x_{X} \cdot \operatorname{isrc}_{T}^{(3)}\left(y x_{X}\right) \\
& \operatorname{isrc}_{\forall X T}^{(2)}=\lambda t x . \operatorname{elim}_{\bar{X} \mapsto \operatorname{RedCand}}(\bar{x}) \Rightarrow \forall^{r} t\left(R C_{T}(t) \Rightarrow t\right), \Downarrow\left(\lambda \times x \operatorname{isrc}_{T}^{(2)}\right) \operatorname{normrct} t\left(\operatorname{elim}_{\bar{X} \mapsto \operatorname{RedCand}}(\bar{X}) \Rightarrow R C_{T}(t), \Downarrow \vdash \operatorname{normrc}\right)
\end{aligned}
$$

If $\overrightarrow{\mathfrak{X}} \in \mathcal{P} \overrightarrow{(\Lambda)}$ and $\vec{\varphi} \in|\operatorname{RedC} \overrightarrow{C a n d}(\overline{\mathfrak{X}})|$ then:

$$
\llbracket \operatorname{isrc}_{T}[\vec{\varphi} / \vec{x}] \rrbracket \rrbracket \in \mid \mathcal{R e d C} \text { and }\left(R C_{T}\right)[\overrightarrow{\mathfrak{X}} / \vec{X}] \mid
$$

$R C_{T}\left(M\left[0 \mapsto\left\langle t_{0}, \ldots, t_{m-1}\right\rangle\right]\right)$
If $\frac{\vdots}{\Gamma \vdash M: T}$ is a valid typing derivation in system F, define:

$$
\operatorname{adeq}_{\Gamma \vdash M: T}
$$

such that $\mathrm{FV}\left(\operatorname{adeq}_{\Gamma \vdash M: T}\right)=\left\{x_{X} \mid X \in \mathrm{FV}(\Gamma, T)\right\}$

$$
\cup\left\{t_{U} \mid U \in \Gamma\right\} \cup\left\{y_{U} \mid U \in \Gamma\right\}
$$

$R C_{T}\left(M\left[0 \mapsto\left\langle t_{0}, \ldots, t_{m-1}\right\rangle\right]\right)$

If $\frac{\vdots}{\Gamma \vdash M: T}$ is a valid typing derivation in system F, define:

$$
\operatorname{adeq}_{\Gamma \vdash M: T}
$$

such that $\mathrm{FV}\left(\operatorname{adeq}_{\Gamma \vdash M: T}\right)=\left\{x_{X} \mid X \in \mathrm{FV}(\Gamma, T)\right\}$

$$
\cup\left\{t_{u} \mid U \in \Gamma\right\} \cup\left\{y_{u} \mid U \in \Gamma\right\}
$$

$$
\operatorname{adeq}_{\Gamma \vdash \underline{m}: U}=y_{U} \quad \operatorname{adeq}_{\Gamma \vdash \lambda, M: U \rightarrow T}=\lambda t_{U} y_{U} \cdot \operatorname{isrc}_{T}^{(3)}\left(M^{*}\left[\mathrm{sz} \mapsto \uparrow t_{\Gamma}\right]\right) t_{U} \operatorname{nil} \operatorname{adeq}_{\Gamma, U \vdash M: T}
$$

$$
\operatorname{adeq}_{\Gamma \vdash M N: T}=\operatorname{adeq}_{\Gamma \vdash M: U \rightarrow T}\left(N^{*}\left[\mathbf{z} \mapsto t_{\Gamma}\right]\right) \operatorname{adeq}_{\Gamma \vdash N: U} \quad \operatorname{adeq}_{\Gamma \vdash M: \forall X T}=\lambda x_{X} \cdot \text { adeq }_{\Gamma \vdash M: T}
$$

$$
\operatorname{adeq}_{\ulcorner\vdash M: T\{U / X\}}=\operatorname{elim}_{\bar{X} \mapsto \operatorname{RedCand}}(\bar{X}) \Rightarrow R C_{T}\left(M\left[0 \mapsto t_{\Gamma}\right]\right), R C_{U} \text { adeq }_{\Gamma \vdash M: \forall X T} \text { isrcU }
$$

$R C_{T}\left(M\left[0 \mapsto\left\langle t_{0}, \ldots, t_{m-1}\right\rangle\right]\right)$

If $\frac{\vdots}{\Gamma \vdash M \cdot T}$ is a valid typing derivation in system F, define:

$$
\operatorname{adeq}_{\Gamma \vdash M: T}
$$

such that $\mathrm{FV}\left(\operatorname{adeq}_{\Gamma \vdash M: T}\right)=\left\{x_{X} \mid X \in \mathrm{FV}(\Gamma, T)\right\}$

$$
\cup\left\{t_{U} \mid U \in \Gamma\right\} \cup\left\{y_{u} \mid U \in \Gamma\right\}
$$

$\operatorname{adeq}_{\Gamma \vdash \underline{m}: U}=y_{U} \quad \operatorname{adeq}_{\Gamma \vdash \lambda, M: U \rightarrow T}=\lambda t_{U} y_{U} \cdot \operatorname{isrc}_{T}^{(3)}\left(M^{*}\left[\mathrm{sz} \mapsto \uparrow t_{\Gamma}\right]\right) t_{U} \operatorname{nil}^{(3)} \operatorname{adeq}_{\Gamma, U \vdash M: T}$ $\operatorname{adeq}_{\Gamma \vdash M N: T}=\operatorname{adeq}_{\Gamma \vdash M: U \rightarrow T}\left(N^{*}\left[\mathrm{z} \mapsto t_{\Gamma}\right]\right) \operatorname{adeq}_{\Gamma \vdash N: U} \quad \operatorname{adeq}_{\Gamma \vdash M: \forall X T}=\lambda x X \cdot \operatorname{adeq}_{\Gamma \vdash M: T}$ $\operatorname{adeq}_{\Gamma \vdash M: T\{U / X\}}=\operatorname{elim}_{\bar{X} \mapsto \mathcal{R e d C a n d}}(\bar{X}) \Rightarrow R C_{T}\left(M\left[0 \mapsto t_{\Gamma}\right]\right), R C_{U}$ adeq $_{\Gamma \vdash M: \forall X T} \operatorname{isrc} \operatorname{lin}$

If $\overrightarrow{\mathfrak{X}} \in \mathcal{P} \overrightarrow{(\Lambda)}, \vec{\varphi} \in|\mathcal{R e d C a n d}(\overrightarrow{\mathfrak{X}})|, \mathfrak{M}_{U} \in \Lambda$ and $\psi_{U} \in\left|R C_{U}\left(\mathfrak{M}_{U}\right)[\overrightarrow{\mathfrak{X}} / \vec{X}]\right|$ for $U \in \Gamma$, then:
$\left[\left[\operatorname{adeq}_{\Gamma \vdash M: T}\left[\overrightarrow{\mathfrak{M}}_{U} / \overrightarrow{t_{U}}, \overrightarrow{\psi_{U}} / \overrightarrow{y_{U}}\right]\right]\right] \in\left|R C_{T}\left(M\left[0 \mapsto \overrightarrow{\mathfrak{M}}_{U}\right]\right)[\overrightarrow{\mathfrak{X}} / \vec{X}]\right|$

The translation of $M: T$

Extracting the bound

In particular if M closed term of closed type T, then:
$\llbracket \operatorname{adeq}_{\vdash M: T} \rrbracket \in\left|R C_{T}(M)\right|$ and $\left[\left[\operatorname{isrc}_{T}^{(2)}\right]\right] \in\left|\forall^{r} t\left(R C_{T}(t) \Rightarrow t \downarrow\right)\right|$

Extracting the bound

In particular if M closed term of closed type T, then:
$\llbracket \operatorname{adeq}_{\vdash M: T} \rrbracket \in\left|R C_{T}(M)\right|$ and $\left[\left[\operatorname{isrc}_{T}^{(2)}\right]\right] \in\left|\forall^{r} t\left(R C_{T}(t) \Rightarrow t \downarrow\right)\right|$ therefore:

$$
\left[\left[\operatorname{isrc}_{T}^{(2)} M^{*} \operatorname{adeq}_{\vdash M: T}\right]\right] \in|M \downarrow|
$$

Extracting the bound

In particular if M closed term of closed type T, then:
$\llbracket \operatorname{adeq}_{\vdash M: T} \rrbracket \in\left|R C_{T}(M)\right|$ and $\left[\left[\operatorname{isrc}_{T}^{(2)}\right]\right] \in\left|\forall^{r} t\left(R C_{T}(t) \Rightarrow t \downarrow\right)\right|$ therefore:

$$
\left[\left[\operatorname{isrc}_{T}^{(2)} M^{*} \operatorname{adeq}_{\vdash M: T}\right]\right] \in|M \downarrow|
$$

recall that $M \downarrow \equiv \neg \forall^{r} i \neg M \downarrow^{i}$. Fix now:

$$
\Perp=\{\mathfrak{n} \in \mathbb{N} \mid M \text { normalizes in at most } \mathfrak{n} \text { steps }\}
$$

Extracting the bound

In particular if M closed term of closed type T, then:
$\llbracket \operatorname{adeq}_{\vdash M: T} \rrbracket \in\left|R C_{T}(M)\right|$ and $\left[\left[\operatorname{isrc}_{T}^{(2)}\right]\right] \in\left|\forall^{r} t\left(R C_{T}(t) \Rightarrow t \downarrow\right)\right|$ therefore:

$$
\left[\left[\operatorname{isrc}_{T}^{(2)} M^{*} \operatorname{adeq}_{\vdash M: T}\right]\right] \in|M \downarrow|
$$

recall that $M \downarrow \equiv \neg \forall^{r} i \neg M \downarrow^{i}$. Fix now:

$$
\Perp=\{\mathfrak{n} \in \mathbb{N} \mid M \text { normalizes in at most } \mathfrak{n} \text { steps }\}
$$

By case disjunction, $\llbracket \lambda x_{\ldots} . x \rrbracket \in\left|\forall^{r} i \neg M \downarrow^{i}\right|$ and therefore:

$$
\left[\left[\operatorname{isrc}_{T}^{(2)} M^{*} \operatorname{adeq}_{\vdash M: T}\left(\lambda x_{-} \cdot x\right)\right]\right] \in|f|=\Perp
$$

Extracting the bound

In particular if M closed term of closed type T, then:
$\llbracket \operatorname{adeq}_{\vdash M: T} \rrbracket \in\left|R C_{T}(M)\right|$ and $\left[\left[\operatorname{isrc}_{T}^{(2)}\right]\right] \in\left|\forall^{r} t\left(R C_{T}(t) \Rightarrow t \downarrow\right)\right|$ therefore:

$$
\left[\left[\operatorname{isrc}_{T}^{(2)} M^{*} \operatorname{adeq}_{\vdash M: T}\right]\right] \in|M \downarrow|
$$

recall that $M \downarrow \equiv \neg \forall^{r} i \neg M \downarrow^{i}$. Fix now:

$$
\Perp=\{\mathfrak{n} \in \mathbb{N} \mid M \text { normalizes in at most } \mathfrak{n} \text { steps }\}
$$

By case disjunction, $\llbracket \lambda x_{-} . x \rrbracket \in\left|\forall^{r} i \neg M \downarrow^{i}\right|$ and therefore:

$$
\left[\left[\operatorname{isrc}_{T}^{(2)} M^{*} \operatorname{adeq}_{\vdash M: T}\left(\lambda x_{-} \cdot x\right)\right]\right] \in|f f|=\Perp
$$

so by computational adequacy:

$$
\operatorname{isrc}_{T}^{(2)} M^{*} \operatorname{adeq}_{\vdash M: T}\left(\lambda x_{-} . x\right) \rightsquigarrow^{*} s^{n} z
$$

where \mathfrak{n} is such that M normalizes in at most \mathfrak{n} steps

Computing the normal form

$\operatorname{isrc}_{T}^{(2)} M^{*} \operatorname{adeq}_{\vdash M: T}\left(\lambda x_{-} . x\right) \rightsquigarrow^{*} s^{n} z$
where \mathfrak{n} is such that M normalizes in at most \mathfrak{n} steps

Computing the normal form

$$
\operatorname{isrc}_{T}^{(2)} M^{*} \operatorname{adeq}_{\vdash M: T}\left(\lambda x_{-} \cdot x\right) \rightsquigarrow^{*} s^{\mathfrak{n}} z
$$

where \mathfrak{n} is such that M normalizes in at most \mathfrak{n} steps

We can easily define a term red : $\lambda \rightarrow \lambda$ in system $\Lambda T_{b r}$ such that:

- if $M \succ N$ then red $M^{*} \rightsquigarrow *^{*} N^{*}$
- if M is in weak head normal form then red $M^{*} \rightsquigarrow * M^{*}$

Computing the normal form

$$
\operatorname{isrc}_{T}^{(2)} M^{*} \operatorname{adeq}_{\vdash M: T}\left(\lambda x_{-} \cdot x\right) \rightsquigarrow^{*} s^{\mathfrak{n}} z
$$

where \mathfrak{n} is such that M normalizes in at most \mathfrak{n} steps

We can easily define a term red : $\lambda \rightarrow \lambda$ in system $\Lambda T_{b r}$ such that:

- if $M \succ N$ then red $M^{*} \rightsquigarrow{ }^{*} N^{*}$
- if M is in weak head normal form then red $M^{*} \rightsquigarrow * M^{*}$ therefore:

$$
\operatorname{it}_{\iota} M^{*} \operatorname{red}\left(\operatorname{isrc}_{T}^{(2)} M^{*} \operatorname{adeq}_{\vdash M: T}\left(\lambda x_{-} x\right)\right) \rightsquigarrow^{*} N^{*}
$$

where N is the weak head normal form of M

Conclusion

Conclusion

- Translation of system F into a simply-typed total programming language

Conclusion

- Translation of system F into a simply-typed total programming language
- No more impredicativity?

Conclusion

- Translation of system F into a simply-typed total programming language
- No more impredicativity?
- Normalization of system F reduced to Zorn's lemma?

Conclusion

- Translation of system F into a simply-typed total programming language
- No more impredicativity?
- Normalization of system F reduced to Zorn's lemma?
- Weak form of bar recursion: comprehension scheme weaker than classical countable choice?

Conclusion

- Translation of system F into a simply-typed total programming language
- No more impredicativity?
- Normalization of system F reduced to Zorn's lemma?
- Weak form of bar recursion: comprehension scheme weaker than classical countable choice?

Many possible improvements:

Conclusion

- Translation of system F into a simply-typed total programming language
- No more impredicativity?
- Normalization of system F reduced to Zorn's lemma?
- Weak form of bar recursion: comprehension scheme weaker than classical countable choice?

Many possible improvements:

- Extract directly the normal form rather than a bound
- Normal form of M from normal form of $M \underline{0}$
- Head reduction rather than weak head reduction

Conclusion

- Translation of system F into a simply-typed total programming language
- No more impredicativity?
- Normalization of system F reduced to Zorn's lemma?
- Weak form of bar recursion: comprehension scheme weaker than classical countable choice?

Many possible improvements:

- Extract directly the normal form rather than a bound
- Normal form of M from normal form of $M \underline{0}$
- Head reduction rather than weak head reduction
- Strong normalization
- Realizers much more complicated
- But we get the β-normal form

Conclusion

- Translation of system F into a simply-typed total programming language
- No more impredicativity?
- Normalization of system F reduced to Zorn's lemma?
- Weak form of bar recursion: comprehension scheme weaker than classical countable choice?

Many possible improvements:

- Extract directly the normal form rather than a bound
- Normal form of M from normal form of $M \underline{0}$
- Head reduction rather than weak head reduction
- Strong normalization
- Realizers much more complicated
- But we get the β-normal form

Implementation of the translation

Adequacy of bar recursion: preliminaries

$$
\begin{aligned}
& \llbracket \lambda x y \cdot \operatorname{brec}\left(\lambda z \cdot \operatorname{exf}_{A^{-}}(x z)\right) y\} \rrbracket \\
& \in\left|\forall t \exists b A^{-}(b, t) \Rightarrow \exists X \forall^{r} t A^{-}(t \in X, t)\right|
\end{aligned}
$$

Adequacy of bar recursion: preliminaries

$$
\begin{aligned}
& \llbracket \lambda x y \cdot \operatorname{brec}\left(\lambda z \cdot \operatorname{exf}_{A^{-}}(x z)\right) y\} \rrbracket \\
& \in\left|\forall t \exists b A^{-}(b, t) \Rightarrow \exists X \forall^{r} t A^{-}(t \in X, t)\right|
\end{aligned}
$$

Let $\varphi \in\left|\forall t \exists b A^{-}(b, t)\right|$ and $\psi \in\left|\forall X \neg \forall^{r} t A^{-}(t \in X, t)\right|$, and write $\theta \triangleq \llbracket \operatorname{brec}\left(\lambda z . \operatorname{exf}_{A^{-}}(\varphi z)\right) \psi \rrbracket$.

Adequacy of bar recursion: preliminaries

$\llbracket \lambda x y . \operatorname{brec}\left(\lambda z . \operatorname{exf}_{A^{-}}(x z)\right) y\{ \} \rrbracket$

$$
\in\left|\forall t \exists b A^{-}(b, t) \Rightarrow \exists X \forall^{r} t A^{-}(t \in X, t)\right|
$$

Let $\varphi \in\left|\forall t \exists b A^{-}(b, t)\right|$ and $\psi \in\left|\forall X \neg \forall^{r} t A^{-}(t \in X, t)\right|$, and write $\theta \triangleq \llbracket \operatorname{brec}\left(\lambda z . \operatorname{exf}_{A^{-}}(\varphi z)\right) \psi \rrbracket . \llbracket \theta\{ \} \rrbracket \in|f| ?$

Adequacy of bar recursion: preliminaries

$\llbracket \lambda x y . \operatorname{brec}\left(\lambda z . \operatorname{exf}_{A^{-}}(x z)\right) y\{ \} \rrbracket$

$$
\in\left|\forall t \exists b A^{-}(b, t) \Rightarrow \exists X \forall^{r} t A^{-}(t \in X, t)\right|
$$

Let $\varphi \in\left|\forall t \exists b A^{-}(b, t)\right|$ and $\psi \in\left|\forall X \neg \forall^{r} t A^{-}(t \in X, t)\right|$, and write $\theta \triangleq \llbracket \operatorname{brec}\left(\lambda z . \operatorname{exf}_{A^{-}}(\varphi z)\right) \psi \rrbracket . \llbracket \theta\{ \} \rrbracket \in|f| ?$ Let E be the set of $\xi \in\left[\left[A^{-* \dagger}\right]\right]$ such that:

- $\pi_{2}(\xi(\mathfrak{M})) \in\left|A^{-}(\mathfrak{H}, \mathfrak{M})\right| \cup\left|A^{-}(\mathfrak{f}, \mathfrak{M})\right|$ if $\pi_{1}(\xi(\mathfrak{M}))=0$
- $\xi(\mathfrak{M})=\left(1, \llbracket \operatorname{can}_{A^{-*}} \rrbracket\right)$ otherwise
- $\xi(\perp)=\perp$
- $\theta(\xi) \notin|f|$

Adequacy of bar recursion: preliminaries

$\llbracket \lambda x y . \operatorname{brec}\left(\lambda z \cdot \operatorname{exf}_{A^{-}}(x z)\right) y\{ \} \rrbracket$

$$
\in\left|\forall t \exists b A^{-}(b, t) \Rightarrow \exists X \forall^{r} t A^{-}(t \in X, t)\right|
$$

Let $\varphi \in\left|\forall t \exists b A^{-}(b, t)\right|$ and $\psi \in\left|\forall X \neg \forall^{r} t A^{-}(t \in X, t)\right|$, and write $\theta \triangleq \llbracket \operatorname{brec}\left(\lambda z . \operatorname{exf}_{A^{-}}(\varphi z)\right) \psi \rrbracket . \llbracket \theta\{ \} \rrbracket \in|f|$? Let E be the set of $\xi \in\left[\left[A^{-* \dagger}\right]\right]$ such that:

- $\pi_{2}(\xi(\mathfrak{M})) \in\left|A^{-}(\mathfrak{t}, \mathfrak{M})\right| \cup\left|A^{-}(\mathfrak{f}, \mathfrak{M})\right|$ if $\pi_{1}(\xi(\mathfrak{M}))=0$
- $\xi(\mathfrak{M})=\left(1, \llbracket \mathrm{can}_{A^{-*}} \rrbracket\right)$ otherwise
- $\xi(\perp)=\perp$
- $\theta(\xi) \notin|f|$
and let \prec be the following partial order on E :

$$
\begin{aligned}
\xi \prec \xi^{\prime} \Longleftrightarrow & \left(\pi_{1}(\xi(\mathfrak{M}))=0 \Rightarrow \xi^{\prime}(\mathfrak{M})=\xi(\mathfrak{M})\right) \\
& \llbracket \theta\} \rrbracket \in|\tilde{f}| \Longleftrightarrow \llbracket\} \rrbracket \notin E
\end{aligned}
$$

Adequacy of bar recursion: Zorn's lemma

Theorem (Zorn's lemma on (E, \prec))
if every chain (totally ordered subset) of E has an upper bound in E, then E has a maximal element

Adequacy of bar recursion: Zorn's lemma

Theorem (Zorn's lemma on (E, \prec))
if every chain (totally ordered subset) of E has an upper bound in E, then E has a maximal element

We prove two things:

- Every non-empty chain has an upper bound
- E has no maximal element

Adequacy of bar recursion: Zorn's lemma

Theorem (Zorn's lemma on (E, \prec))
if every chain (totally ordered subset) of E has an upper bound in E, then E has a maximal element

We prove two things:

- Every non-empty chain has an upper bound
- E has no maximal element

Therefore the empty chain has no upper bound, i.e. $E=\emptyset$. In particular $\llbracket\} \rrbracket \notin E$, we are done.

Adequacy of bar recursion: chains $\neq \emptyset$ have upper bounds

- C non-empty chain

Adequacy of bar recursion: chains $\neq \emptyset$ have upper bounds

- C non-empty chain
- $\xi_{\text {max }}(\mathfrak{M})=\left\{\begin{array}{l}\xi(\mathfrak{M}) \text { if } \pi_{1}(\xi(\mathfrak{M}))=0 \text { for some } \xi \in C \\ \left(1, \llbracket \operatorname{can}_{A^{-*}} \rrbracket\right) \text { otherwise }\end{array}\right.$
$\xi_{\text {max }}(\perp)=\perp$

Adequacy of bar recursion: chains $\neq \emptyset$ have upper bounds

- C non-empty chain
- $\xi_{\text {max }}(\mathfrak{M})=\left\{\begin{array}{l}\xi(\mathfrak{M}) \text { if } \pi_{1}(\xi(\mathfrak{M}))=0 \text { for some } \xi \in C \\ \left(1, \llbracket \operatorname{can}_{A^{-*}} \rrbracket\right) \text { otherwise }\end{array}\right.$
$\xi_{\text {max }}(\perp)=\perp$
- $\xi_{\max } \in E$: we want to prove $\theta\left(\xi_{\max }\right) \notin|f f|$.
- Suppose $\theta\left(\xi_{\max }\right) \in|f f|$

Adequacy of bar recursion: chains $\neq \emptyset$ have upper bounds

- C non-empty chain
- $\xi_{\text {max }}(\mathfrak{M})=\left\{\begin{array}{l}\xi(\mathfrak{M}) \text { if } \pi_{1}(\xi(\mathfrak{M}))=0 \text { for some } \xi \in C \\ \left(1, \llbracket \operatorname{can}_{\left.A^{-*} \rrbracket \rrbracket\right)} \text { otherwise }\right.\end{array}\right.$
$\xi_{\text {max }}(\perp)=\perp$
- $\xi_{\text {max }} \in E$: we want to prove $\theta\left(\xi_{\max }\right) \notin|f f|$.
- Suppose $\theta\left(\xi_{\text {max }}\right) \in|f|$
- Continuity of θ implies existence of finite $F \subseteq \Lambda$ such that:

$$
\forall \xi\left(\forall \mathfrak{M} \in F\left(\xi(\mathfrak{M})=\xi_{\max }(\mathfrak{M})\right) \Rightarrow \theta(\xi)=\theta\left(\xi_{\max }\right)\right)
$$

Adequacy of bar recursion: chains $\neq \emptyset$ have upper bounds

- C non-empty chain
- $\xi_{\text {max }}(\mathfrak{M})=\left\{\begin{array}{l}\xi(\mathfrak{M}) \text { if } \pi_{1}(\xi(\mathfrak{M}))=0 \text { for some } \xi \in C \\ \left(1, \llbracket \operatorname{can}_{\left.\left.A^{-*} \rrbracket\right]\right) \text { otherwise }}\right.\end{array}\right.$
$\xi_{\max }(\perp)=\perp$
- $\xi_{\text {max }} \in E$: we want to prove $\theta\left(\xi_{\max }\right) \notin|f f|$.
- Suppose $\theta\left(\xi_{\max }\right) \in|f f|$
- Continuity of θ implies existence of finite $F \subseteq \Lambda$ such that:

$$
\forall \xi\left(\forall \mathfrak{M} \in F\left(\xi(\mathfrak{M})=\xi_{\max }(\mathfrak{M})\right) \Rightarrow \theta(\xi)=\theta\left(\xi_{\max }\right)\right)
$$

- Since C is a non-empty chain there exists $\xi \in C$ such that $\forall \mathfrak{M} \in F\left(\xi(\mathfrak{M})=\xi_{\text {max }}(\mathfrak{M})\right)$ and therefore $\theta(\xi)=\theta\left(\xi_{\text {max }}\right)$. $\xi \in E$ so $\theta(\xi) \notin|f f|$ and $\theta\left(\xi_{\max }\right)=\theta(\xi) \notin|f f|$, contradiction.

Adequacy of bar recursion: chains $\neq \emptyset$ have upper bounds

- C non-empty chain
- $\xi_{\text {max }}(\mathfrak{M})=\left\{\begin{array}{l}\xi(\mathfrak{M}) \text { if } \pi_{1}(\xi(\mathfrak{M}))=0 \text { for some } \xi \in C \\ \left(1, \llbracket \operatorname{can}_{\left.\left.A^{-*} \rrbracket\right]\right) \text { otherwise }}\right.\end{array}\right.$
$\xi_{\text {max }}(\perp)=\perp$
- $\xi_{\text {max }} \in E$: we want to prove $\theta\left(\xi_{\max }\right) \notin|f f|$.
- Suppose $\theta\left(\xi_{\text {max }}\right) \in|f|$
- Continuity of θ implies existence of finite $F \subseteq \Lambda$ such that:

$$
\forall \xi\left(\forall \mathfrak{M} \in F\left(\xi(\mathfrak{M})=\xi_{\max }(\mathfrak{M})\right) \Rightarrow \theta(\xi)=\theta\left(\xi_{\max }\right)\right)
$$

- Since C is a non-empty chain there exists $\xi \in C$ such that $\forall \mathfrak{M} \in F\left(\xi(\mathfrak{M})=\xi_{\text {max }}(\mathfrak{M})\right)$ and therefore $\theta(\xi)=\theta\left(\xi_{\text {max }}\right)$. $\xi \in E$ so $\theta(\xi) \notin|f|$ and $\theta\left(\xi_{\max }\right)=\theta(\xi) \notin|f f|$, contradiction.

Therefore $\xi_{\text {max }} \in E$ is an upper bound for C

Adequacy of bar recursion: E has no maximal element

- Suppose ξ is a maximal element of E

Adequacy of bar recursion: E has no maximal element

- Suppose ξ is a maximal element of E
- $\llbracket \theta \xi \rrbracket=\llbracket \psi\left(\xi \mid \lambda x \cdot \operatorname{exf}_{A^{-}}(\varphi(\lambda y . \theta(\xi \cup\{x \mapsto y\})))\right) \rrbracket$

Adequacy of bar recursion: E has no maximal element

- Suppose ξ is a maximal element of E
- $\llbracket \theta \xi \rrbracket=\llbracket \psi\left(\xi \mid \lambda x \cdot \operatorname{exf}_{A^{-}}(\varphi(\lambda y . \theta(\xi \cup\{x \mapsto y\})))\right) \rrbracket$
- Let $\mathfrak{X}=\left\{\mathfrak{M} \in \Lambda\left|\pi_{2}(\xi(\mathfrak{M})) \in\right| A^{-}(\mathfrak{H}, \mathfrak{M}) \mid\right\}$

Adequacy of bar recursion: E has no maximal element

- Suppose ξ is a maximal element of E
- $\llbracket \theta \xi \rrbracket=\llbracket \psi\left(\xi \mid \lambda x \cdot \operatorname{exf}_{A^{-}}(\varphi(\lambda y . \theta(\xi \cup\{x \mapsto y\})))\right) \rrbracket$
- Let $\mathfrak{X}=\left\{\mathfrak{M} \in \Lambda\left|\pi_{2}(\xi(\mathfrak{M})) \in\right| A^{-}(\mathbb{H}, \mathfrak{M}) \mid\right\}$
- $\psi \in\left|\neg \forall^{r} t A^{-}(t \in \mathfrak{X}, t)\right|$ and $\llbracket \theta \xi \rrbracket=\theta(\xi) \notin|f f|$ so:
$\llbracket \xi\left|\lambda x \cdot \operatorname{exf}_{A^{-}}(\varphi(\lambda y \cdot \theta(\xi \cup\{x \mapsto y\}))) \rrbracket \notin\right| \forall^{r} t A^{-}(t \in \mathfrak{X}, t) \mid$

Adequacy of bar recursion: E has no maximal element

- Suppose ξ is a maximal element of E
- $\llbracket \theta \xi \rrbracket=\llbracket \psi\left(\xi \mid \lambda x \cdot \operatorname{exf}_{A^{-}}(\varphi(\lambda y . \theta(\xi \cup\{x \mapsto y\})))\right) \rrbracket$
- Let $\mathfrak{X}=\left\{\mathfrak{M} \in \Lambda\left|\pi_{2}(\xi(\mathfrak{M})) \in\right| A^{-}(\mathfrak{H}, \mathfrak{M}) \mid\right\}$
- $\psi \in\left|\neg \forall^{r} t A^{-}(t \in \mathfrak{X}, t)\right|$ and $\llbracket \theta \xi \rrbracket=\theta(\xi) \notin|f f|$ so:
$\llbracket \xi\left|\lambda x \cdot \operatorname{exf}_{A^{-}}(\varphi(\lambda y \cdot \theta(\xi \cup\{x \mapsto y\}))) \rrbracket \notin\right| \forall^{r} t A^{-}(t \in \mathfrak{X}, t) \mid$
- there is some $\mathfrak{M} \in \Lambda$ such that:
$\llbracket\left(\xi \mid \lambda x \cdot \operatorname{exf}_{A^{-}}(\varphi(\lambda y \cdot \theta(\xi \cup\{x \mapsto y\})))\right) \mathfrak{M} \rrbracket \notin\left|A^{-}(\mathfrak{M} \in \mathfrak{X}, \mathfrak{M})\right|$

Adequacy of bar recursion: E has no maximal element

- Suppose ξ is a maximal element of E
- $\llbracket \theta \xi \rrbracket=\llbracket \psi\left(\xi \mid \lambda x \cdot \operatorname{exf}_{A^{-}}(\varphi(\lambda y . \theta(\xi \cup\{x \mapsto y\})))\right) \rrbracket$
- Let $\mathfrak{X}=\left\{\mathfrak{M} \in \Lambda\left|\pi_{2}(\xi(\mathfrak{M})) \in\right| A^{-}(\mathfrak{H}, \mathfrak{M}) \mid\right\}$
- $\psi \in\left|\neg \forall^{r} t A^{-}(t \in \mathfrak{X}, t)\right|$ and $\llbracket \theta \xi \rrbracket=\theta(\xi) \notin|f f|$ so:
$\llbracket \xi\left|\lambda x \cdot \operatorname{exf}_{A^{-}}(\varphi(\lambda y \cdot \theta(\xi \cup\{x \mapsto y\}))) \rrbracket \notin\right| \forall^{r} t A^{-}(t \in \mathfrak{X}, t) \mid$
- there is some $\mathfrak{M} \in \Lambda$ such that:
$\llbracket\left(\xi \mid \lambda x \cdot \operatorname{exf}_{A^{-}}(\varphi(\lambda y . \theta(\xi \cup\{x \mapsto y\})))\right) \mathfrak{M} \rrbracket \notin\left|A^{-}(\mathfrak{M} \in \mathfrak{X}, \mathfrak{M})\right|$
- If $\pi_{1}(\xi(\mathfrak{M}))=0$ then $\pi_{2}(\xi(\mathfrak{M})) \notin\left|A^{-}(\mathfrak{M} \in \mathfrak{X}, \mathfrak{M})\right|$, absurd by definition of \mathfrak{X} since $\xi \in E$

Adequacy of bar recursion: E has no maximal element

- Suppose ξ is a maximal element of E
- $\llbracket \theta \xi \rrbracket=\llbracket \psi\left(\xi \mid \lambda x \cdot \operatorname{exf}_{A^{-}}(\varphi(\lambda y . \theta(\xi \cup\{x \mapsto y\})))\right) \rrbracket$
- Let $\mathfrak{X}=\left\{\mathfrak{M} \in \Lambda\left|\pi_{2}(\xi(\mathfrak{M})) \in\right| A^{-}(\mathfrak{H}, \mathfrak{M}) \mid\right\}$
- $\psi \in\left|\neg \forall^{r} t A^{-}(t \in \mathfrak{X}, t)\right|$ and $\llbracket \theta \xi \rrbracket=\theta(\xi) \notin|f f|$ so:
$\llbracket \xi\left|\lambda x \cdot \operatorname{exf}_{A^{-}}(\varphi(\lambda y \cdot \theta(\xi \cup\{x \mapsto y\}))) \rrbracket \notin\right| \forall^{r} t A^{-}(t \in \mathfrak{X}, t) \mid$
- there is some $\mathfrak{M} \in \Lambda$ such that:
$\llbracket\left(\xi \mid \lambda x \cdot \operatorname{exf}_{A^{-}}(\varphi(\lambda y . \theta(\xi \cup\{x \mapsto y\})))\right) \mathfrak{M} \rrbracket \notin\left|A^{-}(\mathfrak{M} \in \mathfrak{X}, \mathfrak{M})\right|$
- If $\pi_{1}(\xi(\mathfrak{M}))=0$ then $\pi_{2}(\xi(\mathfrak{M})) \notin\left|A^{-}(\mathfrak{M} \in \mathfrak{X}, \mathfrak{M})\right|$, absurd by definition of \mathfrak{X} since $\xi \in E$
- Then $\llbracket \operatorname{exf}_{A^{-}}(\varphi(\lambda y . \theta(\xi \cup\{\mathfrak{M} \mapsto y\}))) \rrbracket \notin\left|A^{-}(\mathfrak{M} \in \mathfrak{X}, \mathfrak{M})\right|$

Adequacy of bar recursion: E has no maximal element

- Suppose ξ is a maximal element of E
- $\llbracket \theta \xi \rrbracket=\llbracket \psi\left(\xi \mid \lambda x \cdot \operatorname{exf}_{A^{-}}(\varphi(\lambda y . \theta(\xi \cup\{x \mapsto y\})))\right) \rrbracket$
- Let $\mathfrak{X}=\left\{\mathfrak{M} \in \Lambda\left|\pi_{2}(\xi(\mathfrak{M})) \in\right| A^{-}(\mathfrak{H}, \mathfrak{M}) \mid\right\}$
- $\psi \in\left|\neg \forall^{r} t A^{-}(t \in \mathfrak{X}, t)\right|$ and $\llbracket \theta \xi \rrbracket=\theta(\xi) \notin|f f|$ so:
$\llbracket \xi\left|\lambda x \cdot \operatorname{exf}_{A^{-}}(\varphi(\lambda y \cdot \theta(\xi \cup\{x \mapsto y\}))) \rrbracket \notin\right| \forall^{r} t A^{-}(t \in \mathfrak{X}, t) \mid$
- there is some $\mathfrak{M} \in \Lambda$ such that:
$\llbracket\left(\xi \mid \lambda x \cdot \operatorname{exf}_{A^{-}}(\varphi(\lambda y . \theta(\xi \cup\{x \mapsto y\})))\right) \mathfrak{M} \rrbracket \notin\left|A^{-}(\mathfrak{M} \in \mathfrak{X}, \mathfrak{M})\right|$
- If $\pi_{1}(\xi(\mathfrak{M}))=0$ then $\pi_{2}(\xi(\mathfrak{M})) \notin\left|A^{-}(\mathfrak{M} \in \mathfrak{X}, \mathfrak{M})\right|$, absurd by definition of \mathfrak{X} since $\xi \in E$
- Then $\llbracket \operatorname{exf}_{A^{-}}(\varphi(\lambda y . \theta(\xi \cup\{\mathfrak{M} \mapsto y\}))) \rrbracket \notin\left|A^{-}(\mathfrak{M} \in \mathfrak{X}, \mathfrak{M})\right|$
- $\llbracket \varphi(\lambda y . \theta(\xi \cup\{\mathfrak{M} \mapsto y\})) \rrbracket \notin \mid f\left(\right.$ but $\varphi \in\left|\neg \forall b \neg A^{-}(b, \mathfrak{M})\right|:$

$$
\llbracket \lambda y . \theta(\xi \cup\{\mathfrak{M} \mapsto y\}) \rrbracket \notin\left|\forall b \neg A^{-}(b, \mathfrak{M})\right|
$$

Adequacy of bar recursion: E has no maximal element

- Suppose ξ is a maximal element of E
- $\llbracket \theta \xi \rrbracket=\llbracket \psi\left(\xi \mid \lambda x \cdot \operatorname{exf}_{A^{-}}(\varphi(\lambda y . \theta(\xi \cup\{x \mapsto y\})))\right) \rrbracket$
- Let $\mathfrak{X}=\left\{\mathfrak{M} \in \Lambda\left|\pi_{2}(\xi(\mathfrak{M})) \in\right| A^{-}(\mathfrak{H}, \mathfrak{M}) \mid\right\}$
- $\psi \in\left|\neg \forall^{r} t A^{-}(t \in \mathfrak{X}, t)\right|$ and $\llbracket \theta \xi \rrbracket=\theta(\xi) \notin|f f|$ so:
$\llbracket \xi\left|\lambda x \cdot \operatorname{exf}_{A^{-}}(\varphi(\lambda y \cdot \theta(\xi \cup\{x \mapsto y\}))) \rrbracket \notin\right| \forall^{r} t A^{-}(t \in \mathfrak{X}, t) \mid$
- there is some $\mathfrak{M} \in \Lambda$ such that:
$\llbracket\left(\xi \mid \lambda x \cdot \operatorname{exf}_{A^{-}}(\varphi(\lambda y . \theta(\xi \cup\{x \mapsto y\})))\right) \mathfrak{M} \rrbracket \notin\left|A^{-}(\mathfrak{M} \in \mathfrak{X}, \mathfrak{M})\right|$
- If $\pi_{1}(\xi(\mathfrak{M}))=0$ then $\pi_{2}(\xi(\mathfrak{M})) \notin\left|A^{-}(\mathfrak{M} \in \mathfrak{X}, \mathfrak{M})\right|$, absurd by definition of \mathfrak{X} since $\xi \in E$
- Then $\llbracket \operatorname{exf}_{A^{-}}(\varphi(\lambda y . \theta(\xi \cup\{\mathfrak{M} \mapsto y\}))) \rrbracket \notin\left|A^{-}(\mathfrak{M} \in \mathfrak{X}, \mathfrak{M})\right|$
- $\llbracket \varphi(\lambda y . \theta(\xi \cup\{\mathfrak{M} \mapsto y\})) \rrbracket \notin \mid f\left(\right.$ but $\varphi \in\left|\neg \forall b \neg A^{-}(b, \mathfrak{M})\right|:$

$$
\llbracket \lambda y . \theta(\xi \cup\{\mathfrak{M} \mapsto y\}) \rrbracket \notin\left|\forall b \neg A^{-}(b, \mathfrak{M})\right|
$$

- There exists $\zeta \in\left|A^{-}(\mathbb{t}, \mathfrak{M})\right| \cup\left|A^{-}(\mathfrak{f}, \mathfrak{M})\right|$ such that:

$$
\llbracket \theta(\xi \cup\{\mathfrak{M} \mapsto \zeta\}) \rrbracket \notin|f f|
$$

Adequacy of bar recursion: E has no maximal element

- Suppose ξ is a maximal element of E
- $\llbracket \theta \xi \rrbracket=\llbracket \psi\left(\xi \mid \lambda x \cdot \operatorname{exf}_{A^{-}}(\varphi(\lambda y . \theta(\xi \cup\{x \mapsto y\})))\right) \rrbracket$
- Let $\mathfrak{X}=\left\{\mathfrak{M} \in \Lambda\left|\pi_{2}(\xi(\mathfrak{M})) \in\right| A^{-}(\mathfrak{H}, \mathfrak{M}) \mid\right\}$
- $\psi \in\left|\neg \forall^{r} t A^{-}(t \in \mathfrak{X}, t)\right|$ and $\llbracket \theta \xi \rrbracket=\theta(\xi) \notin|f f|$ so:
$\llbracket \xi\left|\lambda x \cdot \operatorname{exf}_{A^{-}}(\varphi(\lambda y \cdot \theta(\xi \cup\{x \mapsto y\}))) \rrbracket \notin\right| \forall^{r} t A^{-}(t \in \mathfrak{X}, t) \mid$
- there is some $\mathfrak{M} \in \Lambda$ such that:
$\llbracket\left(\xi \mid \lambda x \cdot \operatorname{exf}_{A^{-}}(\varphi(\lambda y . \theta(\xi \cup\{x \mapsto y\})))\right) \mathfrak{M} \rrbracket \notin\left|A^{-}(\mathfrak{M} \in \mathfrak{X}, \mathfrak{M})\right|$
- If $\pi_{1}(\xi(\mathfrak{M}))=0$ then $\pi_{2}(\xi(\mathfrak{M})) \notin\left|A^{-}(\mathfrak{M} \in \mathfrak{X}, \mathfrak{M})\right|$, absurd by definition of \mathfrak{X} since $\xi \in E$
- Then $\llbracket \operatorname{exf}_{A^{-}}(\varphi(\lambda y . \theta(\xi \cup\{\mathfrak{M} \mapsto y\}))) \rrbracket \notin\left|A^{-}(\mathfrak{M} \in \mathfrak{X}, \mathfrak{M})\right|$
- $\llbracket \varphi(\lambda y . \theta(\xi \cup\{\mathfrak{M} \mapsto y\})) \rrbracket \notin \mid f\left(\right.$ but $\varphi \in\left|\neg \forall b \neg A^{-}(b, \mathfrak{M})\right|:$

$$
\llbracket \lambda y . \theta(\xi \cup\{\mathfrak{M} \mapsto y\}) \rrbracket \notin\left|\forall b \neg A^{-}(b, \mathfrak{M})\right|
$$

- There exists $\zeta \in\left|A^{-}(\mathbb{t}, \mathfrak{M})\right| \cup\left|A^{-}(\mathfrak{f}, \mathfrak{M})\right|$ such that:

$$
\llbracket \theta(\xi \cup\{\mathfrak{M} \mapsto \zeta\}) \rrbracket \notin|f f|
$$

- $\llbracket \xi \cup\{\mathfrak{M} \mapsto \zeta\} \rrbracket \in E$ and $\xi \prec \llbracket \xi \cup\{\mathfrak{M} \mapsto \zeta\} \rrbracket$, contradiction

